gem5/src/arch/arm/interrupts.hh
Geoffrey Blake 5f425b8bd1 Fix bugs due to interaction between SEV instructions and O3 pipeline
SEV instructions were originally implemented to cause asynchronous squashes
via the generateTCSquash() function in the O3 pipeline when updating the
SEV_MAILBOX miscReg. This caused race conditions between CPUs in an MP system
that would lead to a pipeline either going inactive indefinitely or not being
able to commit squashed instructions. Fixed SEV instructions to behave like
interrupts and cause synchronous sqaushes inside the pipeline, eliminating
the race conditions. Also fixed up the semantics of the WFE instruction to
behave as documented in the ARMv7 ISA description to not sleep if SEV_MAILBOX=1
or unmasked interrupts are pending.
2011-08-19 15:08:07 -05:00

200 lines
5.7 KiB
C++

/*
* Copyright (c) 2010 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ali Saidi
*/
#ifndef __ARCH_ARM_INTERRUPT_HH__
#define __ARCH_ARM_INTERRUPT_HH__
#include "arch/arm/faults.hh"
#include "arch/arm/isa_traits.hh"
#include "arch/arm/miscregs.hh"
#include "arch/arm/registers.hh"
#include "cpu/thread_context.hh"
#include "debug/Interrupt.hh"
#include "params/ArmInterrupts.hh"
#include "sim/sim_object.hh"
namespace ArmISA
{
class Interrupts : public SimObject
{
private:
BaseCPU * cpu;
bool interrupts[NumInterruptTypes];
uint64_t intStatus;
public:
void
setCPU(BaseCPU * _cpu)
{
cpu = _cpu;
}
typedef ArmInterruptsParams Params;
const Params *
params() const
{
return dynamic_cast<const Params *>(_params);
}
Interrupts(Params * p) : SimObject(p), cpu(NULL)
{
clearAll();
}
void
post(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= NumInterruptTypes)
panic("int_num out of bounds\n");
if (index != 0)
panic("No support for other interrupt indexes\n");
interrupts[int_num] = true;
intStatus |= ULL(1) << int_num;
}
void
clear(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
if (int_num < 0 || int_num >= NumInterruptTypes)
panic("int_num out of bounds\n");
if (index != 0)
panic("No support for other interrupt indexes\n");
interrupts[int_num] = false;
intStatus &= ~(ULL(1) << int_num);
}
void
clearAll()
{
DPRINTF(Interrupt, "Interrupts all cleared\n");
intStatus = 0;
memset(interrupts, 0, sizeof(interrupts));
}
bool
checkInterrupts(ThreadContext *tc) const
{
if (!intStatus)
return false;
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
return ((interrupts[INT_IRQ] && !cpsr.i) ||
(interrupts[INT_FIQ] && !cpsr.f) ||
(interrupts[INT_ABT] && !cpsr.a) ||
(interrupts[INT_RST]) ||
(interrupts[INT_SEV]));
}
/**
* Check the raw interrupt state.
* This function is used to check if a wfi operation should sleep. If there
* is an interrupt pending, even if it's masked, wfi doesn't sleep.
* @return any interrupts pending
*/
bool
checkRaw() const
{
return intStatus;
}
Fault
getInterrupt(ThreadContext *tc)
{
if (!intStatus)
return NoFault;
CPSR cpsr = tc->readMiscReg(MISCREG_CPSR);
if (interrupts[INT_IRQ] && !cpsr.i)
return new Interrupt;
if (interrupts[INT_FIQ] && !cpsr.f)
return new FastInterrupt;
if (interrupts[INT_ABT] && !cpsr.a)
return new DataAbort(0, false, 0,
ArmFault::AsynchronousExternalAbort);
if (interrupts[INT_RST])
return new Reset;
if (interrupts[INT_SEV])
return new ArmSev;
panic("intStatus and interrupts not in sync\n");
}
void
updateIntrInfo(ThreadContext *tc)
{
; // nothing to do
}
void
serialize(std::ostream &os)
{
SERIALIZE_ARRAY(interrupts, NumInterruptTypes);
SERIALIZE_SCALAR(intStatus);
}
void
unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(interrupts, NumInterruptTypes);
UNSERIALIZE_SCALAR(intStatus);
}
};
} // namespace ARM_ISA
#endif // __ARCH_ARM_INTERRUPT_HH__