fb6cdf09cb
Also some touch up for ruflag. --HG-- extra : convert_revision : 829947169af25ca6573f53b9430707101c75cc23
1965 lines
68 KiB
Python
Executable file
1965 lines
68 KiB
Python
Executable file
# Copyright (c) 2003-2005 The Regents of The University of Michigan
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without
|
|
# modification, are permitted provided that the following conditions are
|
|
# met: redistributions of source code must retain the above copyright
|
|
# notice, this list of conditions and the following disclaimer;
|
|
# redistributions in binary form must reproduce the above copyright
|
|
# notice, this list of conditions and the following disclaimer in the
|
|
# documentation and/or other materials provided with the distribution;
|
|
# neither the name of the copyright holders nor the names of its
|
|
# contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
#
|
|
# Authors: Steve Reinhardt
|
|
# Korey Sewell
|
|
|
|
import os
|
|
import sys
|
|
import re
|
|
import string
|
|
import traceback
|
|
# get type names
|
|
from types import *
|
|
|
|
# Prepend the directory where the PLY lex & yacc modules are found
|
|
# to the search path. Assumes we're compiling in a subdirectory
|
|
# of 'build' in the current tree.
|
|
sys.path[0:0] = [os.environ['M5_PLY']]
|
|
|
|
from ply import lex
|
|
from ply import yacc
|
|
|
|
#####################################################################
|
|
#
|
|
# Lexer
|
|
#
|
|
# The PLY lexer module takes two things as input:
|
|
# - A list of token names (the string list 'tokens')
|
|
# - A regular expression describing a match for each token. The
|
|
# regexp for token FOO can be provided in two ways:
|
|
# - as a string variable named t_FOO
|
|
# - as the doc string for a function named t_FOO. In this case,
|
|
# the function is also executed, allowing an action to be
|
|
# associated with each token match.
|
|
#
|
|
#####################################################################
|
|
|
|
# Reserved words. These are listed separately as they are matched
|
|
# using the same regexp as generic IDs, but distinguished in the
|
|
# t_ID() function. The PLY documentation suggests this approach.
|
|
reserved = (
|
|
'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
|
|
'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
|
|
'OUTPUT', 'SIGNED', 'TEMPLATE'
|
|
)
|
|
|
|
# List of tokens. The lex module requires this.
|
|
tokens = reserved + (
|
|
# identifier
|
|
'ID',
|
|
|
|
# integer literal
|
|
'INTLIT',
|
|
|
|
# string literal
|
|
'STRLIT',
|
|
|
|
# code literal
|
|
'CODELIT',
|
|
|
|
# ( ) [ ] { } < > , ; . : :: *
|
|
'LPAREN', 'RPAREN',
|
|
'LBRACKET', 'RBRACKET',
|
|
'LBRACE', 'RBRACE',
|
|
'LESS', 'GREATER', 'EQUALS',
|
|
'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
|
|
'ASTERISK',
|
|
|
|
# C preprocessor directives
|
|
'CPPDIRECTIVE'
|
|
|
|
# The following are matched but never returned. commented out to
|
|
# suppress PLY warning
|
|
# newfile directive
|
|
# 'NEWFILE',
|
|
|
|
# endfile directive
|
|
# 'ENDFILE'
|
|
)
|
|
|
|
# Regular expressions for token matching
|
|
t_LPAREN = r'\('
|
|
t_RPAREN = r'\)'
|
|
t_LBRACKET = r'\['
|
|
t_RBRACKET = r'\]'
|
|
t_LBRACE = r'\{'
|
|
t_RBRACE = r'\}'
|
|
t_LESS = r'\<'
|
|
t_GREATER = r'\>'
|
|
t_EQUALS = r'='
|
|
t_COMMA = r','
|
|
t_SEMI = r';'
|
|
t_DOT = r'\.'
|
|
t_COLON = r':'
|
|
t_DBLCOLON = r'::'
|
|
t_ASTERISK = r'\*'
|
|
|
|
# Identifiers and reserved words
|
|
reserved_map = { }
|
|
for r in reserved:
|
|
reserved_map[r.lower()] = r
|
|
|
|
def t_ID(t):
|
|
r'[A-Za-z_]\w*'
|
|
t.type = reserved_map.get(t.value,'ID')
|
|
return t
|
|
|
|
# Integer literal
|
|
def t_INTLIT(t):
|
|
r'(0x[\da-fA-F]+)|\d+'
|
|
try:
|
|
t.value = int(t.value,0)
|
|
except ValueError:
|
|
error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
|
|
t.value = 0
|
|
return t
|
|
|
|
# String literal. Note that these use only single quotes, and
|
|
# can span multiple lines.
|
|
def t_STRLIT(t):
|
|
r"(?m)'([^'])+'"
|
|
# strip off quotes
|
|
t.value = t.value[1:-1]
|
|
t.lexer.lineno += t.value.count('\n')
|
|
return t
|
|
|
|
|
|
# "Code literal"... like a string literal, but delimiters are
|
|
# '{{' and '}}' so they get formatted nicely under emacs c-mode
|
|
def t_CODELIT(t):
|
|
r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
|
|
# strip off {{ & }}
|
|
t.value = t.value[2:-2]
|
|
t.lexer.lineno += t.value.count('\n')
|
|
return t
|
|
|
|
def t_CPPDIRECTIVE(t):
|
|
r'^\#[^\#].*\n'
|
|
t.lexer.lineno += t.value.count('\n')
|
|
return t
|
|
|
|
def t_NEWFILE(t):
|
|
r'^\#\#newfile\s+"[\w/.-]*"'
|
|
fileNameStack.push((t.value[11:-1], t.lexer.lineno))
|
|
t.lexer.lineno = 0
|
|
|
|
def t_ENDFILE(t):
|
|
r'^\#\#endfile'
|
|
(old_filename, t.lexer.lineno) = fileNameStack.pop()
|
|
|
|
#
|
|
# The functions t_NEWLINE, t_ignore, and t_error are
|
|
# special for the lex module.
|
|
#
|
|
|
|
# Newlines
|
|
def t_NEWLINE(t):
|
|
r'\n+'
|
|
t.lexer.lineno += t.value.count('\n')
|
|
|
|
# Comments
|
|
def t_comment(t):
|
|
r'//.*'
|
|
|
|
# Completely ignored characters
|
|
t_ignore = ' \t\x0c'
|
|
|
|
# Error handler
|
|
def t_error(t):
|
|
error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
|
|
t.skip(1)
|
|
|
|
# Build the lexer
|
|
lexer = lex.lex()
|
|
|
|
#####################################################################
|
|
#
|
|
# Parser
|
|
#
|
|
# Every function whose name starts with 'p_' defines a grammar rule.
|
|
# The rule is encoded in the function's doc string, while the
|
|
# function body provides the action taken when the rule is matched.
|
|
# The argument to each function is a list of the values of the
|
|
# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
|
|
# on the RHS. For tokens, the value is copied from the t.value
|
|
# attribute provided by the lexer. For non-terminals, the value
|
|
# is assigned by the producing rule; i.e., the job of the grammar
|
|
# rule function is to set the value for the non-terminal on the LHS
|
|
# (by assigning to t[0]).
|
|
#####################################################################
|
|
|
|
# The LHS of the first grammar rule is used as the start symbol
|
|
# (in this case, 'specification'). Note that this rule enforces
|
|
# that there will be exactly one namespace declaration, with 0 or more
|
|
# global defs/decls before and after it. The defs & decls before
|
|
# the namespace decl will be outside the namespace; those after
|
|
# will be inside. The decoder function is always inside the namespace.
|
|
def p_specification(t):
|
|
'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
|
|
global_code = t[1]
|
|
isa_name = t[2]
|
|
namespace = isa_name + "Inst"
|
|
# wrap the decode block as a function definition
|
|
t[4].wrap_decode_block('''
|
|
StaticInstPtr
|
|
%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
|
|
{
|
|
using namespace %(namespace)s;
|
|
''' % vars(), '}')
|
|
# both the latter output blocks and the decode block are in the namespace
|
|
namespace_code = t[3] + t[4]
|
|
# pass it all back to the caller of yacc.parse()
|
|
t[0] = (isa_name, namespace, global_code, namespace_code)
|
|
|
|
# ISA name declaration looks like "namespace <foo>;"
|
|
def p_name_decl(t):
|
|
'name_decl : NAMESPACE ID SEMI'
|
|
t[0] = t[2]
|
|
|
|
# 'opt_defs_and_outputs' is a possibly empty sequence of
|
|
# def and/or output statements.
|
|
def p_opt_defs_and_outputs_0(t):
|
|
'opt_defs_and_outputs : empty'
|
|
t[0] = GenCode()
|
|
|
|
def p_opt_defs_and_outputs_1(t):
|
|
'opt_defs_and_outputs : defs_and_outputs'
|
|
t[0] = t[1]
|
|
|
|
def p_defs_and_outputs_0(t):
|
|
'defs_and_outputs : def_or_output'
|
|
t[0] = t[1]
|
|
|
|
def p_defs_and_outputs_1(t):
|
|
'defs_and_outputs : defs_and_outputs def_or_output'
|
|
t[0] = t[1] + t[2]
|
|
|
|
# The list of possible definition/output statements.
|
|
def p_def_or_output(t):
|
|
'''def_or_output : def_format
|
|
| def_bitfield
|
|
| def_bitfield_struct
|
|
| def_template
|
|
| def_operand_types
|
|
| def_operands
|
|
| output_header
|
|
| output_decoder
|
|
| output_exec
|
|
| global_let'''
|
|
t[0] = t[1]
|
|
|
|
# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
|
|
# directly to the appropriate output section.
|
|
|
|
|
|
# Protect any non-dict-substitution '%'s in a format string
|
|
# (i.e. those not followed by '(')
|
|
def protect_non_subst_percents(s):
|
|
return re.sub(r'%(?!\()', '%%', s)
|
|
|
|
# Massage output block by substituting in template definitions and bit
|
|
# operators. We handle '%'s embedded in the string that don't
|
|
# indicate template substitutions (or CPU-specific symbols, which get
|
|
# handled in GenCode) by doubling them first so that the format
|
|
# operation will reduce them back to single '%'s.
|
|
def process_output(s):
|
|
s = protect_non_subst_percents(s)
|
|
# protects cpu-specific symbols too
|
|
s = protect_cpu_symbols(s)
|
|
return substBitOps(s % templateMap)
|
|
|
|
def p_output_header(t):
|
|
'output_header : OUTPUT HEADER CODELIT SEMI'
|
|
t[0] = GenCode(header_output = process_output(t[3]))
|
|
|
|
def p_output_decoder(t):
|
|
'output_decoder : OUTPUT DECODER CODELIT SEMI'
|
|
t[0] = GenCode(decoder_output = process_output(t[3]))
|
|
|
|
def p_output_exec(t):
|
|
'output_exec : OUTPUT EXEC CODELIT SEMI'
|
|
t[0] = GenCode(exec_output = process_output(t[3]))
|
|
|
|
# global let blocks 'let {{...}}' (Python code blocks) are executed
|
|
# directly when seen. Note that these execute in a special variable
|
|
# context 'exportContext' to prevent the code from polluting this
|
|
# script's namespace.
|
|
def p_global_let(t):
|
|
'global_let : LET CODELIT SEMI'
|
|
updateExportContext()
|
|
exportContext["header_output"] = ''
|
|
exportContext["decoder_output"] = ''
|
|
exportContext["exec_output"] = ''
|
|
exportContext["decode_block"] = ''
|
|
try:
|
|
exec fixPythonIndentation(t[2]) in exportContext
|
|
except Exception, exc:
|
|
error(t.lexer.lineno,
|
|
'error: %s in global let block "%s".' % (exc, t[2]))
|
|
t[0] = GenCode(header_output = exportContext["header_output"],
|
|
decoder_output = exportContext["decoder_output"],
|
|
exec_output = exportContext["exec_output"],
|
|
decode_block = exportContext["decode_block"])
|
|
|
|
# Define the mapping from operand type extensions to C++ types and bit
|
|
# widths (stored in operandTypeMap).
|
|
def p_def_operand_types(t):
|
|
'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
|
|
try:
|
|
userDict = eval('{' + t[3] + '}')
|
|
except Exception, exc:
|
|
error(t.lexer.lineno,
|
|
'error: %s in def operand_types block "%s".' % (exc, t[3]))
|
|
buildOperandTypeMap(userDict, t.lexer.lineno)
|
|
t[0] = GenCode() # contributes nothing to the output C++ file
|
|
|
|
# Define the mapping from operand names to operand classes and other
|
|
# traits. Stored in operandNameMap.
|
|
def p_def_operands(t):
|
|
'def_operands : DEF OPERANDS CODELIT SEMI'
|
|
if not globals().has_key('operandTypeMap'):
|
|
error(t.lexer.lineno,
|
|
'error: operand types must be defined before operands')
|
|
try:
|
|
userDict = eval('{' + t[3] + '}')
|
|
except Exception, exc:
|
|
error(t.lexer.lineno,
|
|
'error: %s in def operands block "%s".' % (exc, t[3]))
|
|
buildOperandNameMap(userDict, t.lexer.lineno)
|
|
t[0] = GenCode() # contributes nothing to the output C++ file
|
|
|
|
# A bitfield definition looks like:
|
|
# 'def [signed] bitfield <ID> [<first>:<last>]'
|
|
# This generates a preprocessor macro in the output file.
|
|
def p_def_bitfield_0(t):
|
|
'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
|
|
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
|
|
if (t[2] == 'signed'):
|
|
expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
|
|
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
|
|
t[0] = GenCode(header_output = hash_define)
|
|
|
|
# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
|
|
def p_def_bitfield_1(t):
|
|
'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
|
|
expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
|
|
if (t[2] == 'signed'):
|
|
expr = 'sext<%d>(%s)' % (1, expr)
|
|
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
|
|
t[0] = GenCode(header_output = hash_define)
|
|
|
|
# alternate form for structure member: 'def bitfield <ID> <ID>'
|
|
def p_def_bitfield_struct(t):
|
|
'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
|
|
if (t[2] != ''):
|
|
error(t.lexer.lineno, 'error: structure bitfields are always unsigned.')
|
|
expr = 'machInst.%s' % t[5]
|
|
hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
|
|
t[0] = GenCode(header_output = hash_define)
|
|
|
|
def p_id_with_dot_0(t):
|
|
'id_with_dot : ID'
|
|
t[0] = t[1]
|
|
|
|
def p_id_with_dot_1(t):
|
|
'id_with_dot : ID DOT id_with_dot'
|
|
t[0] = t[1] + t[2] + t[3]
|
|
|
|
def p_opt_signed_0(t):
|
|
'opt_signed : SIGNED'
|
|
t[0] = t[1]
|
|
|
|
def p_opt_signed_1(t):
|
|
'opt_signed : empty'
|
|
t[0] = ''
|
|
|
|
# Global map variable to hold templates
|
|
templateMap = {}
|
|
|
|
def p_def_template(t):
|
|
'def_template : DEF TEMPLATE ID CODELIT SEMI'
|
|
templateMap[t[3]] = Template(t[4])
|
|
t[0] = GenCode()
|
|
|
|
# An instruction format definition looks like
|
|
# "def format <fmt>(<params>) {{...}};"
|
|
def p_def_format(t):
|
|
'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
|
|
(id, params, code) = (t[3], t[5], t[7])
|
|
defFormat(id, params, code, t.lexer.lineno)
|
|
t[0] = GenCode()
|
|
|
|
# The formal parameter list for an instruction format is a possibly
|
|
# empty list of comma-separated parameters. Positional (standard,
|
|
# non-keyword) parameters must come first, followed by keyword
|
|
# parameters, followed by a '*foo' parameter that gets excess
|
|
# positional arguments (as in Python). Each of these three parameter
|
|
# categories is optional.
|
|
#
|
|
# Note that we do not support the '**foo' parameter for collecting
|
|
# otherwise undefined keyword args. Otherwise the parameter list is
|
|
# (I believe) identical to what is supported in Python.
|
|
#
|
|
# The param list generates a tuple, where the first element is a list of
|
|
# the positional params and the second element is a dict containing the
|
|
# keyword params.
|
|
def p_param_list_0(t):
|
|
'param_list : positional_param_list COMMA nonpositional_param_list'
|
|
t[0] = t[1] + t[3]
|
|
|
|
def p_param_list_1(t):
|
|
'''param_list : positional_param_list
|
|
| nonpositional_param_list'''
|
|
t[0] = t[1]
|
|
|
|
def p_positional_param_list_0(t):
|
|
'positional_param_list : empty'
|
|
t[0] = []
|
|
|
|
def p_positional_param_list_1(t):
|
|
'positional_param_list : ID'
|
|
t[0] = [t[1]]
|
|
|
|
def p_positional_param_list_2(t):
|
|
'positional_param_list : positional_param_list COMMA ID'
|
|
t[0] = t[1] + [t[3]]
|
|
|
|
def p_nonpositional_param_list_0(t):
|
|
'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
|
|
t[0] = t[1] + t[3]
|
|
|
|
def p_nonpositional_param_list_1(t):
|
|
'''nonpositional_param_list : keyword_param_list
|
|
| excess_args_param'''
|
|
t[0] = t[1]
|
|
|
|
def p_keyword_param_list_0(t):
|
|
'keyword_param_list : keyword_param'
|
|
t[0] = [t[1]]
|
|
|
|
def p_keyword_param_list_1(t):
|
|
'keyword_param_list : keyword_param_list COMMA keyword_param'
|
|
t[0] = t[1] + [t[3]]
|
|
|
|
def p_keyword_param(t):
|
|
'keyword_param : ID EQUALS expr'
|
|
t[0] = t[1] + ' = ' + t[3].__repr__()
|
|
|
|
def p_excess_args_param(t):
|
|
'excess_args_param : ASTERISK ID'
|
|
# Just concatenate them: '*ID'. Wrap in list to be consistent
|
|
# with positional_param_list and keyword_param_list.
|
|
t[0] = [t[1] + t[2]]
|
|
|
|
# End of format definition-related rules.
|
|
##############
|
|
|
|
#
|
|
# A decode block looks like:
|
|
# decode <field1> [, <field2>]* [default <inst>] { ... }
|
|
#
|
|
def p_decode_block(t):
|
|
'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
|
|
default_defaults = defaultStack.pop()
|
|
codeObj = t[5]
|
|
# use the "default defaults" only if there was no explicit
|
|
# default statement in decode_stmt_list
|
|
if not codeObj.has_decode_default:
|
|
codeObj += default_defaults
|
|
codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
|
|
t[0] = codeObj
|
|
|
|
# The opt_default statement serves only to push the "default defaults"
|
|
# onto defaultStack. This value will be used by nested decode blocks,
|
|
# and used and popped off when the current decode_block is processed
|
|
# (in p_decode_block() above).
|
|
def p_opt_default_0(t):
|
|
'opt_default : empty'
|
|
# no default specified: reuse the one currently at the top of the stack
|
|
defaultStack.push(defaultStack.top())
|
|
# no meaningful value returned
|
|
t[0] = None
|
|
|
|
def p_opt_default_1(t):
|
|
'opt_default : DEFAULT inst'
|
|
# push the new default
|
|
codeObj = t[2]
|
|
codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
|
|
defaultStack.push(codeObj)
|
|
# no meaningful value returned
|
|
t[0] = None
|
|
|
|
def p_decode_stmt_list_0(t):
|
|
'decode_stmt_list : decode_stmt'
|
|
t[0] = t[1]
|
|
|
|
def p_decode_stmt_list_1(t):
|
|
'decode_stmt_list : decode_stmt decode_stmt_list'
|
|
if (t[1].has_decode_default and t[2].has_decode_default):
|
|
error(t.lexer.lineno, 'Two default cases in decode block')
|
|
t[0] = t[1] + t[2]
|
|
|
|
#
|
|
# Decode statement rules
|
|
#
|
|
# There are four types of statements allowed in a decode block:
|
|
# 1. Format blocks 'format <foo> { ... }'
|
|
# 2. Nested decode blocks
|
|
# 3. Instruction definitions.
|
|
# 4. C preprocessor directives.
|
|
|
|
|
|
# Preprocessor directives found in a decode statement list are passed
|
|
# through to the output, replicated to all of the output code
|
|
# streams. This works well for ifdefs, so we can ifdef out both the
|
|
# declarations and the decode cases generated by an instruction
|
|
# definition. Handling them as part of the grammar makes it easy to
|
|
# keep them in the right place with respect to the code generated by
|
|
# the other statements.
|
|
def p_decode_stmt_cpp(t):
|
|
'decode_stmt : CPPDIRECTIVE'
|
|
t[0] = GenCode(t[1], t[1], t[1], t[1])
|
|
|
|
# A format block 'format <foo> { ... }' sets the default instruction
|
|
# format used to handle instruction definitions inside the block.
|
|
# This format can be overridden by using an explicit format on the
|
|
# instruction definition or with a nested format block.
|
|
def p_decode_stmt_format(t):
|
|
'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
|
|
# The format will be pushed on the stack when 'push_format_id' is
|
|
# processed (see below). Once the parser has recognized the full
|
|
# production (though the right brace), we're done with the format,
|
|
# so now we can pop it.
|
|
formatStack.pop()
|
|
t[0] = t[4]
|
|
|
|
# This rule exists so we can set the current format (& push the stack)
|
|
# when we recognize the format name part of the format block.
|
|
def p_push_format_id(t):
|
|
'push_format_id : ID'
|
|
try:
|
|
formatStack.push(formatMap[t[1]])
|
|
t[0] = ('', '// format %s' % t[1])
|
|
except KeyError:
|
|
error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
|
|
|
|
# Nested decode block: if the value of the current field matches the
|
|
# specified constant, do a nested decode on some other field.
|
|
def p_decode_stmt_decode(t):
|
|
'decode_stmt : case_label COLON decode_block'
|
|
label = t[1]
|
|
codeObj = t[3]
|
|
# just wrap the decoding code from the block as a case in the
|
|
# outer switch statement.
|
|
codeObj.wrap_decode_block('\n%s:\n' % label)
|
|
codeObj.has_decode_default = (label == 'default')
|
|
t[0] = codeObj
|
|
|
|
# Instruction definition (finally!).
|
|
def p_decode_stmt_inst(t):
|
|
'decode_stmt : case_label COLON inst SEMI'
|
|
label = t[1]
|
|
codeObj = t[3]
|
|
codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
|
|
codeObj.has_decode_default = (label == 'default')
|
|
t[0] = codeObj
|
|
|
|
# The case label is either a list of one or more constants or 'default'
|
|
def p_case_label_0(t):
|
|
'case_label : intlit_list'
|
|
t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
|
|
|
|
def p_case_label_1(t):
|
|
'case_label : DEFAULT'
|
|
t[0] = 'default'
|
|
|
|
#
|
|
# The constant list for a decode case label must be non-empty, but may have
|
|
# one or more comma-separated integer literals in it.
|
|
#
|
|
def p_intlit_list_0(t):
|
|
'intlit_list : INTLIT'
|
|
t[0] = [t[1]]
|
|
|
|
def p_intlit_list_1(t):
|
|
'intlit_list : intlit_list COMMA INTLIT'
|
|
t[0] = t[1]
|
|
t[0].append(t[3])
|
|
|
|
# Define an instruction using the current instruction format (specified
|
|
# by an enclosing format block).
|
|
# "<mnemonic>(<args>)"
|
|
def p_inst_0(t):
|
|
'inst : ID LPAREN arg_list RPAREN'
|
|
# Pass the ID and arg list to the current format class to deal with.
|
|
currentFormat = formatStack.top()
|
|
codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
|
|
args = ','.join(map(str, t[3]))
|
|
args = re.sub('(?m)^', '//', args)
|
|
args = re.sub('^//', '', args)
|
|
comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
|
|
codeObj.prepend_all(comment)
|
|
t[0] = codeObj
|
|
|
|
# Define an instruction using an explicitly specified format:
|
|
# "<fmt>::<mnemonic>(<args>)"
|
|
def p_inst_1(t):
|
|
'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
|
|
try:
|
|
format = formatMap[t[1]]
|
|
except KeyError:
|
|
error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
|
|
codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
|
|
comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
|
|
codeObj.prepend_all(comment)
|
|
t[0] = codeObj
|
|
|
|
# The arg list generates a tuple, where the first element is a list of
|
|
# the positional args and the second element is a dict containing the
|
|
# keyword args.
|
|
def p_arg_list_0(t):
|
|
'arg_list : positional_arg_list COMMA keyword_arg_list'
|
|
t[0] = ( t[1], t[3] )
|
|
|
|
def p_arg_list_1(t):
|
|
'arg_list : positional_arg_list'
|
|
t[0] = ( t[1], {} )
|
|
|
|
def p_arg_list_2(t):
|
|
'arg_list : keyword_arg_list'
|
|
t[0] = ( [], t[1] )
|
|
|
|
def p_positional_arg_list_0(t):
|
|
'positional_arg_list : empty'
|
|
t[0] = []
|
|
|
|
def p_positional_arg_list_1(t):
|
|
'positional_arg_list : expr'
|
|
t[0] = [t[1]]
|
|
|
|
def p_positional_arg_list_2(t):
|
|
'positional_arg_list : positional_arg_list COMMA expr'
|
|
t[0] = t[1] + [t[3]]
|
|
|
|
def p_keyword_arg_list_0(t):
|
|
'keyword_arg_list : keyword_arg'
|
|
t[0] = t[1]
|
|
|
|
def p_keyword_arg_list_1(t):
|
|
'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
|
|
t[0] = t[1]
|
|
t[0].update(t[3])
|
|
|
|
def p_keyword_arg(t):
|
|
'keyword_arg : ID EQUALS expr'
|
|
t[0] = { t[1] : t[3] }
|
|
|
|
#
|
|
# Basic expressions. These constitute the argument values of
|
|
# "function calls" (i.e. instruction definitions in the decode block)
|
|
# and default values for formal parameters of format functions.
|
|
#
|
|
# Right now, these are either strings, integers, or (recursively)
|
|
# lists of exprs (using Python square-bracket list syntax). Note that
|
|
# bare identifiers are trated as string constants here (since there
|
|
# isn't really a variable namespace to refer to).
|
|
#
|
|
def p_expr_0(t):
|
|
'''expr : ID
|
|
| INTLIT
|
|
| STRLIT
|
|
| CODELIT'''
|
|
t[0] = t[1]
|
|
|
|
def p_expr_1(t):
|
|
'''expr : LBRACKET list_expr RBRACKET'''
|
|
t[0] = t[2]
|
|
|
|
def p_list_expr_0(t):
|
|
'list_expr : expr'
|
|
t[0] = [t[1]]
|
|
|
|
def p_list_expr_1(t):
|
|
'list_expr : list_expr COMMA expr'
|
|
t[0] = t[1] + [t[3]]
|
|
|
|
def p_list_expr_2(t):
|
|
'list_expr : empty'
|
|
t[0] = []
|
|
|
|
#
|
|
# Empty production... use in other rules for readability.
|
|
#
|
|
def p_empty(t):
|
|
'empty :'
|
|
pass
|
|
|
|
# Parse error handler. Note that the argument here is the offending
|
|
# *token*, not a grammar symbol (hence the need to use t.value)
|
|
def p_error(t):
|
|
if t:
|
|
error(t.lexer.lineno, "syntax error at '%s'" % t.value)
|
|
else:
|
|
error(0, "unknown syntax error", True)
|
|
|
|
# END OF GRAMMAR RULES
|
|
#
|
|
# Now build the parser.
|
|
parser = yacc.yacc()
|
|
|
|
|
|
#####################################################################
|
|
#
|
|
# Support Classes
|
|
#
|
|
#####################################################################
|
|
|
|
# Expand template with CPU-specific references into a dictionary with
|
|
# an entry for each CPU model name. The entry key is the model name
|
|
# and the corresponding value is the template with the CPU-specific
|
|
# refs substituted for that model.
|
|
def expand_cpu_symbols_to_dict(template):
|
|
# Protect '%'s that don't go with CPU-specific terms
|
|
t = re.sub(r'%(?!\(CPU_)', '%%', template)
|
|
result = {}
|
|
for cpu in cpu_models:
|
|
result[cpu.name] = t % cpu.strings
|
|
return result
|
|
|
|
# *If* the template has CPU-specific references, return a single
|
|
# string containing a copy of the template for each CPU model with the
|
|
# corresponding values substituted in. If the template has no
|
|
# CPU-specific references, it is returned unmodified.
|
|
def expand_cpu_symbols_to_string(template):
|
|
if template.find('%(CPU_') != -1:
|
|
return reduce(lambda x,y: x+y,
|
|
expand_cpu_symbols_to_dict(template).values())
|
|
else:
|
|
return template
|
|
|
|
# Protect CPU-specific references by doubling the corresponding '%'s
|
|
# (in preparation for substituting a different set of references into
|
|
# the template).
|
|
def protect_cpu_symbols(template):
|
|
return re.sub(r'%(?=\(CPU_)', '%%', template)
|
|
|
|
###############
|
|
# GenCode class
|
|
#
|
|
# The GenCode class encapsulates generated code destined for various
|
|
# output files. The header_output and decoder_output attributes are
|
|
# strings containing code destined for decoder.hh and decoder.cc
|
|
# respectively. The decode_block attribute contains code to be
|
|
# incorporated in the decode function itself (that will also end up in
|
|
# decoder.cc). The exec_output attribute is a dictionary with a key
|
|
# for each CPU model name; the value associated with a particular key
|
|
# is the string of code for that CPU model's exec.cc file. The
|
|
# has_decode_default attribute is used in the decode block to allow
|
|
# explicit default clauses to override default default clauses.
|
|
|
|
class GenCode:
|
|
# Constructor. At this point we substitute out all CPU-specific
|
|
# symbols. For the exec output, these go into the per-model
|
|
# dictionary. For all other output types they get collapsed into
|
|
# a single string.
|
|
def __init__(self,
|
|
header_output = '', decoder_output = '', exec_output = '',
|
|
decode_block = '', has_decode_default = False):
|
|
self.header_output = expand_cpu_symbols_to_string(header_output)
|
|
self.decoder_output = expand_cpu_symbols_to_string(decoder_output)
|
|
if isinstance(exec_output, dict):
|
|
self.exec_output = exec_output
|
|
elif isinstance(exec_output, str):
|
|
# If the exec_output arg is a single string, we replicate
|
|
# it for each of the CPU models, substituting and
|
|
# %(CPU_foo)s params appropriately.
|
|
self.exec_output = expand_cpu_symbols_to_dict(exec_output)
|
|
self.decode_block = expand_cpu_symbols_to_string(decode_block)
|
|
self.has_decode_default = has_decode_default
|
|
|
|
# Override '+' operator: generate a new GenCode object that
|
|
# concatenates all the individual strings in the operands.
|
|
def __add__(self, other):
|
|
exec_output = {}
|
|
for cpu in cpu_models:
|
|
n = cpu.name
|
|
exec_output[n] = self.exec_output[n] + other.exec_output[n]
|
|
return GenCode(self.header_output + other.header_output,
|
|
self.decoder_output + other.decoder_output,
|
|
exec_output,
|
|
self.decode_block + other.decode_block,
|
|
self.has_decode_default or other.has_decode_default)
|
|
|
|
# Prepend a string (typically a comment) to all the strings.
|
|
def prepend_all(self, pre):
|
|
self.header_output = pre + self.header_output
|
|
self.decoder_output = pre + self.decoder_output
|
|
self.decode_block = pre + self.decode_block
|
|
for cpu in cpu_models:
|
|
self.exec_output[cpu.name] = pre + self.exec_output[cpu.name]
|
|
|
|
# Wrap the decode block in a pair of strings (e.g., 'case foo:'
|
|
# and 'break;'). Used to build the big nested switch statement.
|
|
def wrap_decode_block(self, pre, post = ''):
|
|
self.decode_block = pre + indent(self.decode_block) + post
|
|
|
|
################
|
|
# Format object.
|
|
#
|
|
# A format object encapsulates an instruction format. It must provide
|
|
# a defineInst() method that generates the code for an instruction
|
|
# definition.
|
|
|
|
exportContextSymbols = ('InstObjParams', 'makeList', 're', 'string')
|
|
|
|
exportContext = {}
|
|
|
|
def updateExportContext():
|
|
exportContext.update(exportDict(*exportContextSymbols))
|
|
exportContext.update(templateMap)
|
|
|
|
def exportDict(*symNames):
|
|
return dict([(s, eval(s)) for s in symNames])
|
|
|
|
|
|
class Format:
|
|
def __init__(self, id, params, code):
|
|
# constructor: just save away arguments
|
|
self.id = id
|
|
self.params = params
|
|
label = 'def format ' + id
|
|
self.user_code = compile(fixPythonIndentation(code), label, 'exec')
|
|
param_list = string.join(params, ", ")
|
|
f = '''def defInst(_code, _context, %s):
|
|
my_locals = vars().copy()
|
|
exec _code in _context, my_locals
|
|
return my_locals\n''' % param_list
|
|
c = compile(f, label + ' wrapper', 'exec')
|
|
exec c
|
|
self.func = defInst
|
|
|
|
def defineInst(self, name, args, lineno):
|
|
context = {}
|
|
updateExportContext()
|
|
context.update(exportContext)
|
|
if len(name):
|
|
Name = name[0].upper()
|
|
if len(name) > 1:
|
|
Name += name[1:]
|
|
context.update({ 'name': name, 'Name': Name })
|
|
try:
|
|
vars = self.func(self.user_code, context, *args[0], **args[1])
|
|
except Exception, exc:
|
|
error(lineno, 'error defining "%s": %s.' % (name, exc))
|
|
for k in vars.keys():
|
|
if k not in ('header_output', 'decoder_output',
|
|
'exec_output', 'decode_block'):
|
|
del vars[k]
|
|
return GenCode(**vars)
|
|
|
|
# Special null format to catch an implicit-format instruction
|
|
# definition outside of any format block.
|
|
class NoFormat:
|
|
def __init__(self):
|
|
self.defaultInst = ''
|
|
|
|
def defineInst(self, name, args, lineno):
|
|
error(lineno,
|
|
'instruction definition "%s" with no active format!' % name)
|
|
|
|
# This dictionary maps format name strings to Format objects.
|
|
formatMap = {}
|
|
|
|
# Define a new format
|
|
def defFormat(id, params, code, lineno):
|
|
# make sure we haven't already defined this one
|
|
if formatMap.get(id, None) != None:
|
|
error(lineno, 'format %s redefined.' % id)
|
|
# create new object and store in global map
|
|
formatMap[id] = Format(id, params, code)
|
|
|
|
|
|
##############
|
|
# Stack: a simple stack object. Used for both formats (formatStack)
|
|
# and default cases (defaultStack). Simply wraps a list to give more
|
|
# stack-like syntax and enable initialization with an argument list
|
|
# (as opposed to an argument that's a list).
|
|
|
|
class Stack(list):
|
|
def __init__(self, *items):
|
|
list.__init__(self, items)
|
|
|
|
def push(self, item):
|
|
self.append(item);
|
|
|
|
def top(self):
|
|
return self[-1]
|
|
|
|
# The global format stack.
|
|
formatStack = Stack(NoFormat())
|
|
|
|
# The global default case stack.
|
|
defaultStack = Stack( None )
|
|
|
|
# Global stack that tracks current file and line number.
|
|
# Each element is a tuple (filename, lineno) that records the
|
|
# *current* filename and the line number in the *previous* file where
|
|
# it was included.
|
|
fileNameStack = Stack()
|
|
|
|
###################
|
|
# Utility functions
|
|
|
|
#
|
|
# Indent every line in string 's' by two spaces
|
|
# (except preprocessor directives).
|
|
# Used to make nested code blocks look pretty.
|
|
#
|
|
def indent(s):
|
|
return re.sub(r'(?m)^(?!#)', ' ', s)
|
|
|
|
#
|
|
# Munge a somewhat arbitrarily formatted piece of Python code
|
|
# (e.g. from a format 'let' block) into something whose indentation
|
|
# will get by the Python parser.
|
|
#
|
|
# The two keys here are that Python will give a syntax error if
|
|
# there's any whitespace at the beginning of the first line, and that
|
|
# all lines at the same lexical nesting level must have identical
|
|
# indentation. Unfortunately the way code literals work, an entire
|
|
# let block tends to have some initial indentation. Rather than
|
|
# trying to figure out what that is and strip it off, we prepend 'if
|
|
# 1:' to make the let code the nested block inside the if (and have
|
|
# the parser automatically deal with the indentation for us).
|
|
#
|
|
# We don't want to do this if (1) the code block is empty or (2) the
|
|
# first line of the block doesn't have any whitespace at the front.
|
|
|
|
def fixPythonIndentation(s):
|
|
# get rid of blank lines first
|
|
s = re.sub(r'(?m)^\s*\n', '', s);
|
|
if (s != '' and re.match(r'[ \t]', s[0])):
|
|
s = 'if 1:\n' + s
|
|
return s
|
|
|
|
# Error handler. Just call exit. Output formatted to work under
|
|
# Emacs compile-mode. Optional 'print_traceback' arg, if set to True,
|
|
# prints a Python stack backtrace too (can be handy when trying to
|
|
# debug the parser itself).
|
|
def error(lineno, string, print_traceback = False):
|
|
spaces = ""
|
|
for (filename, line) in fileNameStack[0:-1]:
|
|
print spaces + "In file included from " + filename + ":"
|
|
spaces += " "
|
|
# Print a Python stack backtrace if requested.
|
|
if (print_traceback):
|
|
traceback.print_exc()
|
|
if lineno != 0:
|
|
line_str = "%d:" % lineno
|
|
else:
|
|
line_str = ""
|
|
sys.exit(spaces + "%s:%s %s" % (fileNameStack[-1][0], line_str, string))
|
|
|
|
|
|
#####################################################################
|
|
#
|
|
# Bitfield Operator Support
|
|
#
|
|
#####################################################################
|
|
|
|
bitOp1ArgRE = re.compile(r'<\s*(\w+)\s*:\s*>')
|
|
|
|
bitOpWordRE = re.compile(r'(?<![\w\.])([\w\.]+)<\s*(\w+)\s*:\s*(\w+)\s*>')
|
|
bitOpExprRE = re.compile(r'\)<\s*(\w+)\s*:\s*(\w+)\s*>')
|
|
|
|
def substBitOps(code):
|
|
# first convert single-bit selectors to two-index form
|
|
# i.e., <n> --> <n:n>
|
|
code = bitOp1ArgRE.sub(r'<\1:\1>', code)
|
|
# simple case: selector applied to ID (name)
|
|
# i.e., foo<a:b> --> bits(foo, a, b)
|
|
code = bitOpWordRE.sub(r'bits(\1, \2, \3)', code)
|
|
# if selector is applied to expression (ending in ')'),
|
|
# we need to search backward for matching '('
|
|
match = bitOpExprRE.search(code)
|
|
while match:
|
|
exprEnd = match.start()
|
|
here = exprEnd - 1
|
|
nestLevel = 1
|
|
while nestLevel > 0:
|
|
if code[here] == '(':
|
|
nestLevel -= 1
|
|
elif code[here] == ')':
|
|
nestLevel += 1
|
|
here -= 1
|
|
if here < 0:
|
|
sys.exit("Didn't find '('!")
|
|
exprStart = here+1
|
|
newExpr = r'bits(%s, %s, %s)' % (code[exprStart:exprEnd+1],
|
|
match.group(1), match.group(2))
|
|
code = code[:exprStart] + newExpr + code[match.end():]
|
|
match = bitOpExprRE.search(code)
|
|
return code
|
|
|
|
|
|
####################
|
|
# Template objects.
|
|
#
|
|
# Template objects are format strings that allow substitution from
|
|
# the attribute spaces of other objects (e.g. InstObjParams instances).
|
|
|
|
labelRE = re.compile(r'(?<!%)%\(([^\)]+)\)[sd]')
|
|
|
|
class Template:
|
|
def __init__(self, t):
|
|
self.template = t
|
|
|
|
def subst(self, d):
|
|
myDict = None
|
|
|
|
# Protect non-Python-dict substitutions (e.g. if there's a printf
|
|
# in the templated C++ code)
|
|
template = protect_non_subst_percents(self.template)
|
|
# CPU-model-specific substitutions are handled later (in GenCode).
|
|
template = protect_cpu_symbols(template)
|
|
|
|
# Build a dict ('myDict') to use for the template substitution.
|
|
# Start with the template namespace. Make a copy since we're
|
|
# going to modify it.
|
|
myDict = templateMap.copy()
|
|
|
|
if isinstance(d, InstObjParams):
|
|
# If we're dealing with an InstObjParams object, we need
|
|
# to be a little more sophisticated. The instruction-wide
|
|
# parameters are already formed, but the parameters which
|
|
# are only function wide still need to be generated.
|
|
compositeCode = ''
|
|
|
|
myDict.update(d.__dict__)
|
|
# The "operands" and "snippets" attributes of the InstObjParams
|
|
# objects are for internal use and not substitution.
|
|
del myDict['operands']
|
|
del myDict['snippets']
|
|
|
|
snippetLabels = [l for l in labelRE.findall(template)
|
|
if d.snippets.has_key(l)]
|
|
|
|
snippets = dict([(s, mungeSnippet(d.snippets[s]))
|
|
for s in snippetLabels])
|
|
|
|
myDict.update(snippets)
|
|
|
|
compositeCode = ' '.join(map(str, snippets.values()))
|
|
|
|
# Add in template itself in case it references any
|
|
# operands explicitly (like Mem)
|
|
compositeCode += ' ' + template
|
|
|
|
operands = SubOperandList(compositeCode, d.operands)
|
|
|
|
myDict['op_decl'] = operands.concatAttrStrings('op_decl')
|
|
|
|
is_src = lambda op: op.is_src
|
|
is_dest = lambda op: op.is_dest
|
|
|
|
myDict['op_src_decl'] = \
|
|
operands.concatSomeAttrStrings(is_src, 'op_src_decl')
|
|
myDict['op_dest_decl'] = \
|
|
operands.concatSomeAttrStrings(is_dest, 'op_dest_decl')
|
|
|
|
myDict['op_rd'] = operands.concatAttrStrings('op_rd')
|
|
myDict['op_wb'] = operands.concatAttrStrings('op_wb')
|
|
|
|
if d.operands.memOperand:
|
|
myDict['mem_acc_size'] = d.operands.memOperand.mem_acc_size
|
|
myDict['mem_acc_type'] = d.operands.memOperand.mem_acc_type
|
|
|
|
elif isinstance(d, dict):
|
|
# if the argument is a dictionary, we just use it.
|
|
myDict.update(d)
|
|
elif hasattr(d, '__dict__'):
|
|
# if the argument is an object, we use its attribute map.
|
|
myDict.update(d.__dict__)
|
|
else:
|
|
raise TypeError, "Template.subst() arg must be or have dictionary"
|
|
return template % myDict
|
|
|
|
# Convert to string. This handles the case when a template with a
|
|
# CPU-specific term gets interpolated into another template or into
|
|
# an output block.
|
|
def __str__(self):
|
|
return expand_cpu_symbols_to_string(self.template)
|
|
|
|
#####################################################################
|
|
#
|
|
# Code Parser
|
|
#
|
|
# The remaining code is the support for automatically extracting
|
|
# instruction characteristics from pseudocode.
|
|
#
|
|
#####################################################################
|
|
|
|
# Force the argument to be a list. Useful for flags, where a caller
|
|
# can specify a singleton flag or a list of flags. Also usful for
|
|
# converting tuples to lists so they can be modified.
|
|
def makeList(arg):
|
|
if isinstance(arg, list):
|
|
return arg
|
|
elif isinstance(arg, tuple):
|
|
return list(arg)
|
|
elif not arg:
|
|
return []
|
|
else:
|
|
return [ arg ]
|
|
|
|
# Generate operandTypeMap from the user's 'def operand_types'
|
|
# statement.
|
|
def buildOperandTypeMap(userDict, lineno):
|
|
global operandTypeMap
|
|
operandTypeMap = {}
|
|
for (ext, (desc, size)) in userDict.iteritems():
|
|
if desc == 'signed int':
|
|
ctype = 'int%d_t' % size
|
|
is_signed = 1
|
|
elif desc == 'unsigned int':
|
|
ctype = 'uint%d_t' % size
|
|
is_signed = 0
|
|
elif desc == 'float':
|
|
is_signed = 1 # shouldn't really matter
|
|
if size == 32:
|
|
ctype = 'float'
|
|
elif size == 64:
|
|
ctype = 'double'
|
|
elif desc == 'twin64 int':
|
|
is_signed = 0
|
|
ctype = 'Twin64_t'
|
|
elif desc == 'twin32 int':
|
|
is_signed = 0
|
|
ctype = 'Twin32_t'
|
|
if ctype == '':
|
|
error(lineno, 'Unrecognized type description "%s" in userDict')
|
|
operandTypeMap[ext] = (size, ctype, is_signed)
|
|
|
|
#
|
|
#
|
|
#
|
|
# Base class for operand descriptors. An instance of this class (or
|
|
# actually a class derived from this one) represents a specific
|
|
# operand for a code block (e.g, "Rc.sq" as a dest). Intermediate
|
|
# derived classes encapsulates the traits of a particular operand type
|
|
# (e.g., "32-bit integer register").
|
|
#
|
|
class Operand(object):
|
|
def __init__(self, full_name, ext, is_src, is_dest):
|
|
self.full_name = full_name
|
|
self.ext = ext
|
|
self.is_src = is_src
|
|
self.is_dest = is_dest
|
|
# The 'effective extension' (eff_ext) is either the actual
|
|
# extension, if one was explicitly provided, or the default.
|
|
if ext:
|
|
self.eff_ext = ext
|
|
else:
|
|
self.eff_ext = self.dflt_ext
|
|
|
|
(self.size, self.ctype, self.is_signed) = operandTypeMap[self.eff_ext]
|
|
|
|
# note that mem_acc_size is undefined for non-mem operands...
|
|
# template must be careful not to use it if it doesn't apply.
|
|
if self.isMem():
|
|
self.mem_acc_size = self.makeAccSize()
|
|
if self.ctype in ['Twin32_t', 'Twin64_t']:
|
|
self.mem_acc_type = 'Twin'
|
|
else:
|
|
self.mem_acc_type = 'uint'
|
|
|
|
# Finalize additional fields (primarily code fields). This step
|
|
# is done separately since some of these fields may depend on the
|
|
# register index enumeration that hasn't been performed yet at the
|
|
# time of __init__().
|
|
def finalize(self):
|
|
self.flags = self.getFlags()
|
|
self.constructor = self.makeConstructor()
|
|
self.op_decl = self.makeDecl()
|
|
|
|
if self.is_src:
|
|
self.op_rd = self.makeRead()
|
|
self.op_src_decl = self.makeDecl()
|
|
else:
|
|
self.op_rd = ''
|
|
self.op_src_decl = ''
|
|
|
|
if self.is_dest:
|
|
self.op_wb = self.makeWrite()
|
|
self.op_dest_decl = self.makeDecl()
|
|
else:
|
|
self.op_wb = ''
|
|
self.op_dest_decl = ''
|
|
|
|
def isMem(self):
|
|
return 0
|
|
|
|
def isReg(self):
|
|
return 0
|
|
|
|
def isFloatReg(self):
|
|
return 0
|
|
|
|
def isIntReg(self):
|
|
return 0
|
|
|
|
def isControlReg(self):
|
|
return 0
|
|
|
|
def getFlags(self):
|
|
# note the empty slice '[:]' gives us a copy of self.flags[0]
|
|
# instead of a reference to it
|
|
my_flags = self.flags[0][:]
|
|
if self.is_src:
|
|
my_flags += self.flags[1]
|
|
if self.is_dest:
|
|
my_flags += self.flags[2]
|
|
return my_flags
|
|
|
|
def makeDecl(self):
|
|
# Note that initializations in the declarations are solely
|
|
# to avoid 'uninitialized variable' errors from the compiler.
|
|
return self.ctype + ' ' + self.base_name + ' = 0;\n';
|
|
|
|
class IntRegOperand(Operand):
|
|
def isReg(self):
|
|
return 1
|
|
|
|
def isIntReg(self):
|
|
return 1
|
|
|
|
def makeConstructor(self):
|
|
c = ''
|
|
if self.is_src:
|
|
c += '\n\t_srcRegIdx[%d] = %s;' % \
|
|
(self.src_reg_idx, self.reg_spec)
|
|
if self.is_dest:
|
|
c += '\n\t_destRegIdx[%d] = %s;' % \
|
|
(self.dest_reg_idx, self.reg_spec)
|
|
return c
|
|
|
|
def makeRead(self):
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to read integer register as FP')
|
|
if (self.size == self.dflt_size):
|
|
return '%s = xc->readIntRegOperand(this, %d);\n' % \
|
|
(self.base_name, self.src_reg_idx)
|
|
elif (self.size > self.dflt_size):
|
|
int_reg_val = 'xc->readIntRegOperand(this, %d)' % \
|
|
(self.src_reg_idx)
|
|
if (self.is_signed):
|
|
int_reg_val = 'sext<%d>(%s)' % (self.dflt_size, int_reg_val)
|
|
return '%s = %s;\n' % (self.base_name, int_reg_val)
|
|
else:
|
|
return '%s = bits(xc->readIntRegOperand(this, %d), %d, 0);\n' % \
|
|
(self.base_name, self.src_reg_idx, self.size-1)
|
|
|
|
def makeWrite(self):
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to write integer register as FP')
|
|
if (self.size != self.dflt_size and self.is_signed):
|
|
final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
|
|
else:
|
|
final_val = self.base_name
|
|
wb = '''
|
|
{
|
|
%s final_val = %s;
|
|
xc->setIntRegOperand(this, %d, final_val);\n
|
|
if (traceData) { traceData->setData(final_val); }
|
|
}''' % (self.dflt_ctype, final_val, self.dest_reg_idx)
|
|
return wb
|
|
|
|
class FloatRegOperand(Operand):
|
|
def isReg(self):
|
|
return 1
|
|
|
|
def isFloatReg(self):
|
|
return 1
|
|
|
|
def makeConstructor(self):
|
|
c = ''
|
|
if self.is_src:
|
|
c += '\n\t_srcRegIdx[%d] = %s + FP_Base_DepTag;' % \
|
|
(self.src_reg_idx, self.reg_spec)
|
|
if self.is_dest:
|
|
c += '\n\t_destRegIdx[%d] = %s + FP_Base_DepTag;' % \
|
|
(self.dest_reg_idx, self.reg_spec)
|
|
return c
|
|
|
|
def makeRead(self):
|
|
bit_select = 0
|
|
width = 0;
|
|
if (self.ctype == 'float'):
|
|
func = 'readFloatRegOperand'
|
|
width = 32;
|
|
elif (self.ctype == 'double'):
|
|
func = 'readFloatRegOperand'
|
|
width = 64;
|
|
else:
|
|
func = 'readFloatRegOperandBits'
|
|
if (self.ctype == 'uint32_t'):
|
|
width = 32;
|
|
elif (self.ctype == 'uint64_t'):
|
|
width = 64;
|
|
if (self.size != self.dflt_size):
|
|
bit_select = 1
|
|
if width:
|
|
base = 'xc->%s(this, %d, %d)' % \
|
|
(func, self.src_reg_idx, width)
|
|
else:
|
|
base = 'xc->%s(this, %d)' % \
|
|
(func, self.src_reg_idx)
|
|
if bit_select:
|
|
return '%s = bits(%s, %d, 0);\n' % \
|
|
(self.base_name, base, self.size-1)
|
|
else:
|
|
return '%s = %s;\n' % (self.base_name, base)
|
|
|
|
def makeWrite(self):
|
|
final_val = self.base_name
|
|
final_ctype = self.ctype
|
|
widthSpecifier = ''
|
|
width = 0
|
|
if (self.ctype == 'float'):
|
|
width = 32
|
|
func = 'setFloatRegOperand'
|
|
elif (self.ctype == 'double'):
|
|
width = 64
|
|
func = 'setFloatRegOperand'
|
|
elif (self.ctype == 'uint32_t'):
|
|
func = 'setFloatRegOperandBits'
|
|
width = 32
|
|
elif (self.ctype == 'uint64_t'):
|
|
func = 'setFloatRegOperandBits'
|
|
width = 64
|
|
else:
|
|
func = 'setFloatRegOperandBits'
|
|
final_ctype = 'uint%d_t' % self.dflt_size
|
|
if (self.size != self.dflt_size and self.is_signed):
|
|
final_val = 'sext<%d>(%s)' % (self.size, self.base_name)
|
|
if width:
|
|
widthSpecifier = ', %d' % width
|
|
wb = '''
|
|
{
|
|
%s final_val = %s;
|
|
xc->%s(this, %d, final_val%s);\n
|
|
if (traceData) { traceData->setData(final_val); }
|
|
}''' % (final_ctype, final_val, func, self.dest_reg_idx,
|
|
widthSpecifier)
|
|
return wb
|
|
|
|
class ControlRegOperand(Operand):
|
|
def isReg(self):
|
|
return 1
|
|
|
|
def isControlReg(self):
|
|
return 1
|
|
|
|
def makeConstructor(self):
|
|
c = ''
|
|
if self.is_src:
|
|
c += '\n\t_srcRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
|
|
(self.src_reg_idx, self.reg_spec)
|
|
if self.is_dest:
|
|
c += '\n\t_destRegIdx[%d] = %s + Ctrl_Base_DepTag;' % \
|
|
(self.dest_reg_idx, self.reg_spec)
|
|
return c
|
|
|
|
def makeRead(self):
|
|
bit_select = 0
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to read control register as FP')
|
|
base = 'xc->readMiscRegOperand(this, %s)' % self.src_reg_idx
|
|
if self.size == self.dflt_size:
|
|
return '%s = %s;\n' % (self.base_name, base)
|
|
else:
|
|
return '%s = bits(%s, %d, 0);\n' % \
|
|
(self.base_name, base, self.size-1)
|
|
|
|
def makeWrite(self):
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to write control register as FP')
|
|
wb = 'xc->setMiscRegOperand(this, %s, %s);\n' % \
|
|
(self.dest_reg_idx, self.base_name)
|
|
wb += 'if (traceData) { traceData->setData(%s); }' % \
|
|
self.base_name
|
|
return wb
|
|
|
|
class ControlBitfieldOperand(ControlRegOperand):
|
|
def makeRead(self):
|
|
bit_select = 0
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to read control register as FP')
|
|
base = 'xc->readMiscReg(%s)' % self.reg_spec
|
|
name = self.base_name
|
|
return '%s = bits(%s, %s_HI, %s_LO);' % \
|
|
(name, base, name, name)
|
|
|
|
def makeWrite(self):
|
|
if (self.ctype == 'float' or self.ctype == 'double'):
|
|
error(0, 'Attempt to write control register as FP')
|
|
base = 'xc->readMiscReg(%s)' % self.reg_spec
|
|
name = self.base_name
|
|
wb_val = 'insertBits(%s, %s_HI, %s_LO, %s)' % \
|
|
(base, name, name, self.base_name)
|
|
wb = 'xc->setMiscRegOperand(this, %s, %s );\n' % (self.dest_reg_idx, wb_val)
|
|
wb += 'if (traceData) { traceData->setData(%s); }' % \
|
|
self.base_name
|
|
return wb
|
|
|
|
class MemOperand(Operand):
|
|
def isMem(self):
|
|
return 1
|
|
|
|
def makeConstructor(self):
|
|
return ''
|
|
|
|
def makeDecl(self):
|
|
# Note that initializations in the declarations are solely
|
|
# to avoid 'uninitialized variable' errors from the compiler.
|
|
# Declare memory data variable.
|
|
if self.ctype in ['Twin32_t','Twin64_t']:
|
|
return "%s %s; %s.a = 0; %s.b = 0;\n" % (self.ctype, self.base_name,
|
|
self.base_name, self.base_name)
|
|
c = '%s %s = 0;\n' % (self.ctype, self.base_name)
|
|
return c
|
|
|
|
def makeRead(self):
|
|
return ''
|
|
|
|
def makeWrite(self):
|
|
return ''
|
|
|
|
# Return the memory access size *in bits*, suitable for
|
|
# forming a type via "uint%d_t". Divide by 8 if you want bytes.
|
|
def makeAccSize(self):
|
|
return self.size
|
|
|
|
class UPCOperand(Operand):
|
|
def makeConstructor(self):
|
|
return ''
|
|
|
|
def makeRead(self):
|
|
return '%s = xc->readMicroPC();\n' % self.base_name
|
|
|
|
def makeWrite(self):
|
|
return 'xc->setMicroPC(%s);\n' % self.base_name
|
|
|
|
class NUPCOperand(Operand):
|
|
def makeConstructor(self):
|
|
return ''
|
|
|
|
def makeRead(self):
|
|
return '%s = xc->readNextMicroPC();\n' % self.base_name
|
|
|
|
def makeWrite(self):
|
|
return 'xc->setNextMicroPC(%s);\n' % self.base_name
|
|
|
|
class NPCOperand(Operand):
|
|
def makeConstructor(self):
|
|
return ''
|
|
|
|
def makeRead(self):
|
|
return '%s = xc->readNextPC();\n' % self.base_name
|
|
|
|
def makeWrite(self):
|
|
return 'xc->setNextPC(%s);\n' % self.base_name
|
|
|
|
class NNPCOperand(Operand):
|
|
def makeConstructor(self):
|
|
return ''
|
|
|
|
def makeRead(self):
|
|
return '%s = xc->readNextNPC();\n' % self.base_name
|
|
|
|
def makeWrite(self):
|
|
return 'xc->setNextNPC(%s);\n' % self.base_name
|
|
|
|
def buildOperandNameMap(userDict, lineno):
|
|
global operandNameMap
|
|
operandNameMap = {}
|
|
for (op_name, val) in userDict.iteritems():
|
|
(base_cls_name, dflt_ext, reg_spec, flags, sort_pri) = val
|
|
(dflt_size, dflt_ctype, dflt_is_signed) = operandTypeMap[dflt_ext]
|
|
# Canonical flag structure is a triple of lists, where each list
|
|
# indicates the set of flags implied by this operand always, when
|
|
# used as a source, and when used as a dest, respectively.
|
|
# For simplicity this can be initialized using a variety of fairly
|
|
# obvious shortcuts; we convert these to canonical form here.
|
|
if not flags:
|
|
# no flags specified (e.g., 'None')
|
|
flags = ( [], [], [] )
|
|
elif isinstance(flags, str):
|
|
# a single flag: assumed to be unconditional
|
|
flags = ( [ flags ], [], [] )
|
|
elif isinstance(flags, list):
|
|
# a list of flags: also assumed to be unconditional
|
|
flags = ( flags, [], [] )
|
|
elif isinstance(flags, tuple):
|
|
# it's a tuple: it should be a triple,
|
|
# but each item could be a single string or a list
|
|
(uncond_flags, src_flags, dest_flags) = flags
|
|
flags = (makeList(uncond_flags),
|
|
makeList(src_flags), makeList(dest_flags))
|
|
# Accumulate attributes of new operand class in tmp_dict
|
|
tmp_dict = {}
|
|
for attr in ('dflt_ext', 'reg_spec', 'flags', 'sort_pri',
|
|
'dflt_size', 'dflt_ctype', 'dflt_is_signed'):
|
|
tmp_dict[attr] = eval(attr)
|
|
tmp_dict['base_name'] = op_name
|
|
# New class name will be e.g. "IntReg_Ra"
|
|
cls_name = base_cls_name + '_' + op_name
|
|
# Evaluate string arg to get class object. Note that the
|
|
# actual base class for "IntReg" is "IntRegOperand", i.e. we
|
|
# have to append "Operand".
|
|
try:
|
|
base_cls = eval(base_cls_name + 'Operand')
|
|
except NameError:
|
|
error(lineno,
|
|
'error: unknown operand base class "%s"' % base_cls_name)
|
|
# The following statement creates a new class called
|
|
# <cls_name> as a subclass of <base_cls> with the attributes
|
|
# in tmp_dict, just as if we evaluated a class declaration.
|
|
operandNameMap[op_name] = type(cls_name, (base_cls,), tmp_dict)
|
|
|
|
# Define operand variables.
|
|
operands = userDict.keys()
|
|
|
|
operandsREString = (r'''
|
|
(?<![\w\.]) # neg. lookbehind assertion: prevent partial matches
|
|
((%s)(?:\.(\w+))?) # match: operand with optional '.' then suffix
|
|
(?![\w\.]) # neg. lookahead assertion: prevent partial matches
|
|
'''
|
|
% string.join(operands, '|'))
|
|
|
|
global operandsRE
|
|
operandsRE = re.compile(operandsREString, re.MULTILINE|re.VERBOSE)
|
|
|
|
# Same as operandsREString, but extension is mandatory, and only two
|
|
# groups are returned (base and ext, not full name as above).
|
|
# Used for subtituting '_' for '.' to make C++ identifiers.
|
|
operandsWithExtREString = (r'(?<![\w\.])(%s)\.(\w+)(?![\w\.])'
|
|
% string.join(operands, '|'))
|
|
|
|
global operandsWithExtRE
|
|
operandsWithExtRE = re.compile(operandsWithExtREString, re.MULTILINE)
|
|
|
|
|
|
class OperandList:
|
|
|
|
# Find all the operands in the given code block. Returns an operand
|
|
# descriptor list (instance of class OperandList).
|
|
def __init__(self, code):
|
|
self.items = []
|
|
self.bases = {}
|
|
# delete comments so we don't match on reg specifiers inside
|
|
code = commentRE.sub('', code)
|
|
# search for operands
|
|
next_pos = 0
|
|
while 1:
|
|
match = operandsRE.search(code, next_pos)
|
|
if not match:
|
|
# no more matches: we're done
|
|
break
|
|
op = match.groups()
|
|
# regexp groups are operand full name, base, and extension
|
|
(op_full, op_base, op_ext) = op
|
|
# if the token following the operand is an assignment, this is
|
|
# a destination (LHS), else it's a source (RHS)
|
|
is_dest = (assignRE.match(code, match.end()) != None)
|
|
is_src = not is_dest
|
|
# see if we've already seen this one
|
|
op_desc = self.find_base(op_base)
|
|
if op_desc:
|
|
if op_desc.ext != op_ext:
|
|
error(0, 'Inconsistent extensions for operand %s' % \
|
|
op_base)
|
|
op_desc.is_src = op_desc.is_src or is_src
|
|
op_desc.is_dest = op_desc.is_dest or is_dest
|
|
else:
|
|
# new operand: create new descriptor
|
|
op_desc = operandNameMap[op_base](op_full, op_ext,
|
|
is_src, is_dest)
|
|
self.append(op_desc)
|
|
# start next search after end of current match
|
|
next_pos = match.end()
|
|
self.sort()
|
|
# enumerate source & dest register operands... used in building
|
|
# constructor later
|
|
self.numSrcRegs = 0
|
|
self.numDestRegs = 0
|
|
self.numFPDestRegs = 0
|
|
self.numIntDestRegs = 0
|
|
self.memOperand = None
|
|
for op_desc in self.items:
|
|
if op_desc.isReg():
|
|
if op_desc.is_src:
|
|
op_desc.src_reg_idx = self.numSrcRegs
|
|
self.numSrcRegs += 1
|
|
if op_desc.is_dest:
|
|
op_desc.dest_reg_idx = self.numDestRegs
|
|
self.numDestRegs += 1
|
|
if op_desc.isFloatReg():
|
|
self.numFPDestRegs += 1
|
|
elif op_desc.isIntReg():
|
|
self.numIntDestRegs += 1
|
|
elif op_desc.isMem():
|
|
if self.memOperand:
|
|
error(0, "Code block has more than one memory operand.")
|
|
self.memOperand = op_desc
|
|
# now make a final pass to finalize op_desc fields that may depend
|
|
# on the register enumeration
|
|
for op_desc in self.items:
|
|
op_desc.finalize()
|
|
|
|
def __len__(self):
|
|
return len(self.items)
|
|
|
|
def __getitem__(self, index):
|
|
return self.items[index]
|
|
|
|
def append(self, op_desc):
|
|
self.items.append(op_desc)
|
|
self.bases[op_desc.base_name] = op_desc
|
|
|
|
def find_base(self, base_name):
|
|
# like self.bases[base_name], but returns None if not found
|
|
# (rather than raising exception)
|
|
return self.bases.get(base_name)
|
|
|
|
# internal helper function for concat[Some]Attr{Strings|Lists}
|
|
def __internalConcatAttrs(self, attr_name, filter, result):
|
|
for op_desc in self.items:
|
|
if filter(op_desc):
|
|
result += getattr(op_desc, attr_name)
|
|
return result
|
|
|
|
# return a single string that is the concatenation of the (string)
|
|
# values of the specified attribute for all operands
|
|
def concatAttrStrings(self, attr_name):
|
|
return self.__internalConcatAttrs(attr_name, lambda x: 1, '')
|
|
|
|
# like concatAttrStrings, but only include the values for the operands
|
|
# for which the provided filter function returns true
|
|
def concatSomeAttrStrings(self, filter, attr_name):
|
|
return self.__internalConcatAttrs(attr_name, filter, '')
|
|
|
|
# return a single list that is the concatenation of the (list)
|
|
# values of the specified attribute for all operands
|
|
def concatAttrLists(self, attr_name):
|
|
return self.__internalConcatAttrs(attr_name, lambda x: 1, [])
|
|
|
|
# like concatAttrLists, but only include the values for the operands
|
|
# for which the provided filter function returns true
|
|
def concatSomeAttrLists(self, filter, attr_name):
|
|
return self.__internalConcatAttrs(attr_name, filter, [])
|
|
|
|
def sort(self):
|
|
self.items.sort(lambda a, b: a.sort_pri - b.sort_pri)
|
|
|
|
class SubOperandList(OperandList):
|
|
|
|
# Find all the operands in the given code block. Returns an operand
|
|
# descriptor list (instance of class OperandList).
|
|
def __init__(self, code, master_list):
|
|
self.items = []
|
|
self.bases = {}
|
|
# delete comments so we don't match on reg specifiers inside
|
|
code = commentRE.sub('', code)
|
|
# search for operands
|
|
next_pos = 0
|
|
while 1:
|
|
match = operandsRE.search(code, next_pos)
|
|
if not match:
|
|
# no more matches: we're done
|
|
break
|
|
op = match.groups()
|
|
# regexp groups are operand full name, base, and extension
|
|
(op_full, op_base, op_ext) = op
|
|
# find this op in the master list
|
|
op_desc = master_list.find_base(op_base)
|
|
if not op_desc:
|
|
error(0, 'Found operand %s which is not in the master list!' \
|
|
' This is an internal error' % \
|
|
op_base)
|
|
else:
|
|
# See if we've already found this operand
|
|
op_desc = self.find_base(op_base)
|
|
if not op_desc:
|
|
# if not, add a reference to it to this sub list
|
|
self.append(master_list.bases[op_base])
|
|
|
|
# start next search after end of current match
|
|
next_pos = match.end()
|
|
self.sort()
|
|
self.memOperand = None
|
|
for op_desc in self.items:
|
|
if op_desc.isMem():
|
|
if self.memOperand:
|
|
error(0, "Code block has more than one memory operand.")
|
|
self.memOperand = op_desc
|
|
|
|
# Regular expression object to match C++ comments
|
|
# (used in findOperands())
|
|
commentRE = re.compile(r'//.*\n')
|
|
|
|
# Regular expression object to match assignment statements
|
|
# (used in findOperands())
|
|
assignRE = re.compile(r'\s*=(?!=)', re.MULTILINE)
|
|
|
|
# Munge operand names in code string to make legal C++ variable names.
|
|
# This means getting rid of the type extension if any.
|
|
# (Will match base_name attribute of Operand object.)
|
|
def substMungedOpNames(code):
|
|
return operandsWithExtRE.sub(r'\1', code)
|
|
|
|
# Fix up code snippets for final substitution in templates.
|
|
def mungeSnippet(s):
|
|
if isinstance(s, str):
|
|
return substMungedOpNames(substBitOps(s))
|
|
else:
|
|
return s
|
|
|
|
def makeFlagConstructor(flag_list):
|
|
if len(flag_list) == 0:
|
|
return ''
|
|
# filter out repeated flags
|
|
flag_list.sort()
|
|
i = 1
|
|
while i < len(flag_list):
|
|
if flag_list[i] == flag_list[i-1]:
|
|
del flag_list[i]
|
|
else:
|
|
i += 1
|
|
pre = '\n\tflags['
|
|
post = '] = true;'
|
|
code = pre + string.join(flag_list, post + pre) + post
|
|
return code
|
|
|
|
# Assume all instruction flags are of the form 'IsFoo'
|
|
instFlagRE = re.compile(r'Is.*')
|
|
|
|
# OpClass constants end in 'Op' except No_OpClass
|
|
opClassRE = re.compile(r'.*Op|No_OpClass')
|
|
|
|
class InstObjParams:
|
|
def __init__(self, mnem, class_name, base_class = '',
|
|
snippets = {}, opt_args = []):
|
|
self.mnemonic = mnem
|
|
self.class_name = class_name
|
|
self.base_class = base_class
|
|
if not isinstance(snippets, dict):
|
|
snippets = {'code' : snippets}
|
|
compositeCode = ' '.join(map(str, snippets.values()))
|
|
self.snippets = snippets
|
|
|
|
self.operands = OperandList(compositeCode)
|
|
self.constructor = self.operands.concatAttrStrings('constructor')
|
|
self.constructor += \
|
|
'\n\t_numSrcRegs = %d;' % self.operands.numSrcRegs
|
|
self.constructor += \
|
|
'\n\t_numDestRegs = %d;' % self.operands.numDestRegs
|
|
self.constructor += \
|
|
'\n\t_numFPDestRegs = %d;' % self.operands.numFPDestRegs
|
|
self.constructor += \
|
|
'\n\t_numIntDestRegs = %d;' % self.operands.numIntDestRegs
|
|
self.flags = self.operands.concatAttrLists('flags')
|
|
|
|
# Make a basic guess on the operand class (function unit type).
|
|
# These are good enough for most cases, and can be overridden
|
|
# later otherwise.
|
|
if 'IsStore' in self.flags:
|
|
self.op_class = 'MemWriteOp'
|
|
elif 'IsLoad' in self.flags or 'IsPrefetch' in self.flags:
|
|
self.op_class = 'MemReadOp'
|
|
elif 'IsFloating' in self.flags:
|
|
self.op_class = 'FloatAddOp'
|
|
else:
|
|
self.op_class = 'IntAluOp'
|
|
|
|
# Optional arguments are assumed to be either StaticInst flags
|
|
# or an OpClass value. To avoid having to import a complete
|
|
# list of these values to match against, we do it ad-hoc
|
|
# with regexps.
|
|
for oa in opt_args:
|
|
if instFlagRE.match(oa):
|
|
self.flags.append(oa)
|
|
elif opClassRE.match(oa):
|
|
self.op_class = oa
|
|
else:
|
|
error(0, 'InstObjParams: optional arg "%s" not recognized '
|
|
'as StaticInst::Flag or OpClass.' % oa)
|
|
|
|
# add flag initialization to contructor here to include
|
|
# any flags added via opt_args
|
|
self.constructor += makeFlagConstructor(self.flags)
|
|
|
|
# if 'IsFloating' is set, add call to the FP enable check
|
|
# function (which should be provided by isa_desc via a declare)
|
|
if 'IsFloating' in self.flags:
|
|
self.fp_enable_check = 'fault = checkFpEnableFault(xc);'
|
|
else:
|
|
self.fp_enable_check = ''
|
|
|
|
#######################
|
|
#
|
|
# Output file template
|
|
#
|
|
|
|
file_template = '''
|
|
/*
|
|
* DO NOT EDIT THIS FILE!!!
|
|
*
|
|
* It was automatically generated from the ISA description in %(filename)s
|
|
*/
|
|
|
|
%(includes)s
|
|
|
|
%(global_output)s
|
|
|
|
namespace %(namespace)s {
|
|
|
|
%(namespace_output)s
|
|
|
|
} // namespace %(namespace)s
|
|
|
|
%(decode_function)s
|
|
'''
|
|
|
|
|
|
# Update the output file only if the new contents are different from
|
|
# the current contents. Minimizes the files that need to be rebuilt
|
|
# after minor changes.
|
|
def update_if_needed(file, contents):
|
|
update = False
|
|
if os.access(file, os.R_OK):
|
|
f = open(file, 'r')
|
|
old_contents = f.read()
|
|
f.close()
|
|
if contents != old_contents:
|
|
print 'Updating', file
|
|
os.remove(file) # in case it's write-protected
|
|
update = True
|
|
else:
|
|
print 'File', file, 'is unchanged'
|
|
else:
|
|
print 'Generating', file
|
|
update = True
|
|
if update:
|
|
f = open(file, 'w')
|
|
f.write(contents)
|
|
f.close()
|
|
|
|
# This regular expression matches '##include' directives
|
|
includeRE = re.compile(r'^\s*##include\s+"(?P<filename>[\w/.-]*)".*$',
|
|
re.MULTILINE)
|
|
|
|
# Function to replace a matched '##include' directive with the
|
|
# contents of the specified file (with nested ##includes replaced
|
|
# recursively). 'matchobj' is an re match object (from a match of
|
|
# includeRE) and 'dirname' is the directory relative to which the file
|
|
# path should be resolved.
|
|
def replace_include(matchobj, dirname):
|
|
fname = matchobj.group('filename')
|
|
full_fname = os.path.normpath(os.path.join(dirname, fname))
|
|
contents = '##newfile "%s"\n%s\n##endfile\n' % \
|
|
(full_fname, read_and_flatten(full_fname))
|
|
return contents
|
|
|
|
# Read a file and recursively flatten nested '##include' files.
|
|
def read_and_flatten(filename):
|
|
current_dir = os.path.dirname(filename)
|
|
try:
|
|
contents = open(filename).read()
|
|
except IOError:
|
|
error(0, 'Error including file "%s"' % filename)
|
|
fileNameStack.push((filename, 0))
|
|
# Find any includes and include them
|
|
contents = includeRE.sub(lambda m: replace_include(m, current_dir),
|
|
contents)
|
|
fileNameStack.pop()
|
|
return contents
|
|
|
|
#
|
|
# Read in and parse the ISA description.
|
|
#
|
|
def parse_isa_desc(isa_desc_file, output_dir):
|
|
# Read file and (recursively) all included files into a string.
|
|
# PLY requires that the input be in a single string so we have to
|
|
# do this up front.
|
|
isa_desc = read_and_flatten(isa_desc_file)
|
|
|
|
# Initialize filename stack with outer file.
|
|
fileNameStack.push((isa_desc_file, 0))
|
|
|
|
# Parse it.
|
|
(isa_name, namespace, global_code, namespace_code) = \
|
|
parser.parse(isa_desc, lexer=lexer)
|
|
|
|
# grab the last three path components of isa_desc_file to put in
|
|
# the output
|
|
filename = '/'.join(isa_desc_file.split('/')[-3:])
|
|
|
|
# generate decoder.hh
|
|
includes = '#include "base/bitfield.hh" // for bitfield support'
|
|
global_output = global_code.header_output
|
|
namespace_output = namespace_code.header_output
|
|
decode_function = ''
|
|
update_if_needed(output_dir + '/decoder.hh', file_template % vars())
|
|
|
|
# generate decoder.cc
|
|
includes = '#include "decoder.hh"'
|
|
global_output = global_code.decoder_output
|
|
namespace_output = namespace_code.decoder_output
|
|
# namespace_output += namespace_code.decode_block
|
|
decode_function = namespace_code.decode_block
|
|
update_if_needed(output_dir + '/decoder.cc', file_template % vars())
|
|
|
|
# generate per-cpu exec files
|
|
for cpu in cpu_models:
|
|
includes = '#include "decoder.hh"\n'
|
|
includes += cpu.includes
|
|
global_output = global_code.exec_output[cpu.name]
|
|
namespace_output = namespace_code.exec_output[cpu.name]
|
|
decode_function = ''
|
|
update_if_needed(output_dir + '/' + cpu.filename,
|
|
file_template % vars())
|
|
|
|
# global list of CpuModel objects (see cpu_models.py)
|
|
cpu_models = []
|
|
|
|
# Called as script: get args from command line.
|
|
# Args are: <path to cpu_models.py> <isa desc file> <output dir> <cpu models>
|
|
if __name__ == '__main__':
|
|
execfile(sys.argv[1]) # read in CpuModel definitions
|
|
cpu_models = [CpuModel.dict[cpu] for cpu in sys.argv[4:]]
|
|
parse_isa_desc(sys.argv[2], sys.argv[3])
|