gem5/arch/alpha/ev5.cc
Gabe Black 299efffaf5 Cleaned up and slightly reorganized the Fault class heirarchy.
arch/alpha/ev5.cc:
    Changed c style casts of Faults to dynamic_casts
arch/alpha/faults.cc:
    AlphaFault is now an abstract class.
arch/alpha/faults.hh:
    AlphaFault is now an abstract class. Also, AlphaMachineCheckFault and AlphaAlignmentFault multiply inherit from both AlphaFault and from MachineCheckFault and AlignmentFault respectively. These classes get their name from the generic classes.
cpu/o3/alpha_cpu_impl.hh:
    Changed a c style cast to a dynamic_cast for a Fault
sim/faults.hh:
    All generic Fault classes are now abstract. Also, MachineCheckFault and AlignmentFault inherit FaultBase as a virtual base class to help resolve ambiguities when they are multiply inherited in ISA specific classes. The override the isMachineCheckFault and isAlignmentFault functions appropriately, and provide a standard name for these faults.

--HG--
extra : convert_revision : 2cb906708e3eaec4a12587484c09e50ed6ef88fc
2006-02-28 06:02:18 -05:00

661 lines
18 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/alpha/tlb.hh"
#include "arch/alpha/isa_traits.hh"
#include "arch/alpha/osfpal.hh"
#include "base/kgdb.h"
#include "base/remote_gdb.hh"
#include "base/stats/events.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/fast/cpu.hh"
#include "kern/kernel_stats.hh"
#include "sim/debug.hh"
#include "sim/sim_events.hh"
#if FULL_SYSTEM
using namespace EV5;
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::swap_palshadow(RegFile *regs, bool use_shadow)
{
if (regs->pal_shadow == use_shadow)
panic("swap_palshadow: wrong PAL shadow state");
regs->pal_shadow = use_shadow;
for (int i = 0; i < NumIntRegs; i++) {
if (reg_redir[i]) {
IntReg temp = regs->intRegFile[i];
regs->intRegFile[i] = regs->palregs[i];
regs->palregs[i] = temp;
}
}
}
////////////////////////////////////////////////////////////////////////
//
// Machine dependent functions
//
void
AlphaISA::initCPU(RegFile *regs, int cpuId)
{
initIPRs(regs, cpuId);
// CPU comes up with PAL regs enabled
swap_palshadow(regs, true);
regs->intRegFile[16] = cpuId;
regs->intRegFile[0] = cpuId;
regs->pc = regs->ipr[IPR_PAL_BASE] + (new ResetFault)->vect();
regs->npc = regs->pc + sizeof(MachInst);
}
const int AlphaISA::reg_redir[AlphaISA::NumIntRegs] = {
/* 0 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 8 */ 1, 1, 1, 1, 1, 1, 1, 0,
/* 16 */ 0, 0, 0, 0, 0, 0, 0, 0,
/* 24 */ 0, 1, 0, 0, 0, 0, 0, 0 };
////////////////////////////////////////////////////////////////////////
//
//
//
void
AlphaISA::initIPRs(RegFile *regs, int cpuId)
{
uint64_t *ipr = regs->ipr;
bzero((char *)ipr, NumInternalProcRegs * sizeof(InternalProcReg));
ipr[IPR_PAL_BASE] = PalBase;
ipr[IPR_MCSR] = 0x6;
ipr[IPR_PALtemp16] = cpuId;
}
template <class CPU>
void
AlphaISA::processInterrupts(CPU *cpu)
{
//Check if there are any outstanding interrupts
//Handle the interrupts
int ipl = 0;
int summary = 0;
IntReg *ipr = cpu->getIprPtr();
cpu->checkInterrupts = false;
if (ipr[IPR_ASTRR])
panic("asynchronous traps not implemented\n");
if (ipr[IPR_SIRR]) {
for (int i = INTLEVEL_SOFTWARE_MIN;
i < INTLEVEL_SOFTWARE_MAX; i++) {
if (ipr[IPR_SIRR] & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
summary |= (ULL(1) << i);
}
}
}
uint64_t interrupts = cpu->intr_status();
if (interrupts) {
for (int i = INTLEVEL_EXTERNAL_MIN;
i < INTLEVEL_EXTERNAL_MAX; i++) {
if (interrupts & (ULL(1) << i)) {
// See table 4-19 of the 21164 hardware reference
ipl = i;
summary |= (ULL(1) << i);
}
}
}
if (ipl && ipl > ipr[IPR_IPLR]) {
ipr[IPR_ISR] = summary;
ipr[IPR_INTID] = ipl;
cpu->trap(new InterruptFault);
DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
ipr[IPR_IPLR], ipl, summary);
}
}
template <class CPU>
void
AlphaISA::zeroRegisters(CPU *cpu)
{
// Insure ISA semantics
// (no longer very clean due to the change in setIntReg() in the
// cpu model. Consider changing later.)
cpu->xc->setIntReg(ZeroReg, 0);
cpu->xc->setFloatRegDouble(ZeroReg, 0.0);
}
void
ExecContext::ev5_temp_trap(Fault fault)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", fault->name(), regs.pc);
cpu->recordEvent(csprintf("Fault %s", fault->name()));
assert(!misspeculating());
kernelStats->fault(fault);
if (fault->isA<ArithmeticFault>())
panic("Arithmetic traps are unimplemented!");
AlphaISA::InternalProcReg *ipr = regs.ipr;
// exception restart address
if (!fault->isA<InterruptFault>() || !inPalMode())
ipr[AlphaISA::IPR_EXC_ADDR] = regs.pc;
if (fault->isA<PalFault>() || fault->isA<ArithmeticFault>() /* ||
fault == InterruptFault && !inPalMode() */) {
// traps... skip faulting instruction.
ipr[AlphaISA::IPR_EXC_ADDR] += 4;
}
if (!inPalMode())
AlphaISA::swap_palshadow(&regs, true);
regs.pc = ipr[AlphaISA::IPR_PAL_BASE] +
(dynamic_cast<AlphaFault *>(fault.get()))->vect();
regs.npc = regs.pc + sizeof(MachInst);
}
void
AlphaISA::intr_post(RegFile *regs, Fault fault, Addr pc)
{
InternalProcReg *ipr = regs->ipr;
bool use_pc = (fault == NoFault);
if (fault->isA<ArithmeticFault>())
panic("arithmetic faults NYI...");
// compute exception restart address
if (use_pc || fault->isA<PalFault>() || fault->isA<ArithmeticFault>()) {
// traps... skip faulting instruction
ipr[IPR_EXC_ADDR] = regs->pc + 4;
} else {
// fault, post fault at excepting instruction
ipr[IPR_EXC_ADDR] = regs->pc;
}
// jump to expection address (PAL PC bit set here as well...)
if (!use_pc)
regs->npc = ipr[IPR_PAL_BASE] +
(dynamic_cast<AlphaFault *>(fault.get()))->vect();
else
regs->npc = ipr[IPR_PAL_BASE] + pc;
// that's it! (orders of magnitude less painful than x86)
}
Fault
ExecContext::hwrei()
{
uint64_t *ipr = regs.ipr;
if (!inPalMode())
return new UnimplementedOpcodeFault;
setNextPC(ipr[AlphaISA::IPR_EXC_ADDR]);
if (!misspeculating()) {
kernelStats->hwrei();
if ((ipr[AlphaISA::IPR_EXC_ADDR] & 1) == 0)
AlphaISA::swap_palshadow(&regs, false);
cpu->checkInterrupts = true;
}
// FIXME: XXX check for interrupts? XXX
return NoFault;
}
uint64_t
ExecContext::readIpr(int idx, Fault &fault)
{
uint64_t *ipr = regs.ipr;
uint64_t retval = 0; // return value, default 0
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PALtemp23:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
case AlphaISA::IPR_ISR:
case AlphaISA::IPR_EXC_ADDR:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_MCSR:
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
case AlphaISA::IPR_SIRR:
case AlphaISA::IPR_ICSR:
case AlphaISA::IPR_ICM:
case AlphaISA::IPR_DTB_CM:
case AlphaISA::IPR_IPLR:
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_PMCTR:
// no side-effect
retval = ipr[idx];
break;
case AlphaISA::IPR_CC:
retval |= ipr[idx] & ULL(0xffffffff00000000);
retval |= cpu->curCycle() & ULL(0x00000000ffffffff);
break;
case AlphaISA::IPR_VA:
retval = ipr[idx];
break;
case AlphaISA::IPR_VA_FORM:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_IFAULT_VA_FORM:
case AlphaISA::IPR_EXC_MASK:
case AlphaISA::IPR_EXC_SUM:
retval = ipr[idx];
break;
case AlphaISA::IPR_DTB_PTE:
{
AlphaISA::PTE &pte = dtb->index(!misspeculating());
retval |= ((u_int64_t)pte.ppn & ULL(0x7ffffff)) << 32;
retval |= ((u_int64_t)pte.xre & ULL(0xf)) << 8;
retval |= ((u_int64_t)pte.xwe & ULL(0xf)) << 12;
retval |= ((u_int64_t)pte.fonr & ULL(0x1)) << 1;
retval |= ((u_int64_t)pte.fonw & ULL(0x1))<< 2;
retval |= ((u_int64_t)pte.asma & ULL(0x1)) << 4;
retval |= ((u_int64_t)pte.asn & ULL(0x7f)) << 57;
}
break;
// write only registers
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
case AlphaISA::IPR_ALT_MODE:
case AlphaISA::IPR_DTB_IA:
case AlphaISA::IPR_DTB_IAP:
case AlphaISA::IPR_ITB_IA:
case AlphaISA::IPR_ITB_IAP:
fault = new UnimplementedOpcodeFault;
break;
default:
// invalid IPR
fault = new UnimplementedOpcodeFault;
break;
}
return retval;
}
#ifdef DEBUG
// Cause the simulator to break when changing to the following IPL
int break_ipl = -1;
#endif
Fault
ExecContext::setIpr(int idx, uint64_t val)
{
uint64_t *ipr = regs.ipr;
uint64_t old;
if (misspeculating())
return NoFault;
switch (idx) {
case AlphaISA::IPR_PALtemp0:
case AlphaISA::IPR_PALtemp1:
case AlphaISA::IPR_PALtemp2:
case AlphaISA::IPR_PALtemp3:
case AlphaISA::IPR_PALtemp4:
case AlphaISA::IPR_PALtemp5:
case AlphaISA::IPR_PALtemp6:
case AlphaISA::IPR_PALtemp7:
case AlphaISA::IPR_PALtemp8:
case AlphaISA::IPR_PALtemp9:
case AlphaISA::IPR_PALtemp10:
case AlphaISA::IPR_PALtemp11:
case AlphaISA::IPR_PALtemp12:
case AlphaISA::IPR_PALtemp13:
case AlphaISA::IPR_PALtemp14:
case AlphaISA::IPR_PALtemp15:
case AlphaISA::IPR_PALtemp16:
case AlphaISA::IPR_PALtemp17:
case AlphaISA::IPR_PALtemp18:
case AlphaISA::IPR_PALtemp19:
case AlphaISA::IPR_PALtemp20:
case AlphaISA::IPR_PALtemp21:
case AlphaISA::IPR_PALtemp22:
case AlphaISA::IPR_PAL_BASE:
case AlphaISA::IPR_IC_PERR_STAT:
case AlphaISA::IPR_DC_PERR_STAT:
case AlphaISA::IPR_PMCTR:
// write entire quad w/ no side-effect
ipr[idx] = val;
break;
case AlphaISA::IPR_CC_CTL:
// This IPR resets the cycle counter. We assume this only
// happens once... let's verify that.
assert(ipr[idx] == 0);
ipr[idx] = 1;
break;
case AlphaISA::IPR_CC:
// This IPR only writes the upper 64 bits. It's ok to write
// all 64 here since we mask out the lower 32 in rpcc (see
// isa_desc).
ipr[idx] = val;
break;
case AlphaISA::IPR_PALtemp23:
// write entire quad w/ no side-effect
old = ipr[idx];
ipr[idx] = val;
kernelStats->context(old, val);
break;
case AlphaISA::IPR_DTB_PTE:
// write entire quad w/ no side-effect, tag is forthcoming
ipr[idx] = val;
break;
case AlphaISA::IPR_EXC_ADDR:
// second least significant bit in PC is always zero
ipr[idx] = val & ~2;
break;
case AlphaISA::IPR_ASTRR:
case AlphaISA::IPR_ASTER:
// only write least significant four bits - privilege mask
ipr[idx] = val & 0xf;
break;
case AlphaISA::IPR_IPLR:
#ifdef DEBUG
if (break_ipl != -1 && break_ipl == (val & 0x1f))
debug_break();
#endif
// only write least significant five bits - interrupt level
ipr[idx] = val & 0x1f;
kernelStats->swpipl(ipr[idx]);
break;
case AlphaISA::IPR_DTB_CM:
if (val & 0x18)
kernelStats->mode(Kernel::user);
else
kernelStats->mode(Kernel::kernel);
case AlphaISA::IPR_ICM:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_ALT_MODE:
// only write two mode bits - processor mode
ipr[idx] = val & 0x18;
break;
case AlphaISA::IPR_MCSR:
// more here after optimization...
ipr[idx] = val;
break;
case AlphaISA::IPR_SIRR:
// only write software interrupt mask
ipr[idx] = val & 0x7fff0;
break;
case AlphaISA::IPR_ICSR:
ipr[idx] = val & ULL(0xffffff0300);
break;
case AlphaISA::IPR_IVPTBR:
case AlphaISA::IPR_MVPTBR:
ipr[idx] = val & ULL(0xffffffffc0000000);
break;
case AlphaISA::IPR_DC_TEST_CTL:
ipr[idx] = val & 0x1ffb;
break;
case AlphaISA::IPR_DC_MODE:
case AlphaISA::IPR_MAF_MODE:
ipr[idx] = val & 0x3f;
break;
case AlphaISA::IPR_ITB_ASN:
ipr[idx] = val & 0x7f0;
break;
case AlphaISA::IPR_DTB_ASN:
ipr[idx] = val & ULL(0xfe00000000000000);
break;
case AlphaISA::IPR_EXC_SUM:
case AlphaISA::IPR_EXC_MASK:
// any write to this register clears it
ipr[idx] = 0;
break;
case AlphaISA::IPR_INTID:
case AlphaISA::IPR_SL_RCV:
case AlphaISA::IPR_MM_STAT:
case AlphaISA::IPR_ITB_PTE_TEMP:
case AlphaISA::IPR_DTB_PTE_TEMP:
// read-only registers
return new UnimplementedOpcodeFault;
case AlphaISA::IPR_HWINT_CLR:
case AlphaISA::IPR_SL_XMIT:
case AlphaISA::IPR_DC_FLUSH:
case AlphaISA::IPR_IC_FLUSH:
// the following are write only
ipr[idx] = val;
break;
case AlphaISA::IPR_DTB_IA:
// really a control write
ipr[idx] = 0;
dtb->flushAll();
break;
case AlphaISA::IPR_DTB_IAP:
// really a control write
ipr[idx] = 0;
dtb->flushProcesses();
break;
case AlphaISA::IPR_DTB_IS:
// really a control write
ipr[idx] = val;
dtb->flushAddr(val, DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
break;
case AlphaISA::IPR_DTB_TAG: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (DTB_PTE_GH(ipr[AlphaISA::IPR_DTB_PTE]) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = DTB_PTE_PPN(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xre = DTB_PTE_XRE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.xwe = DTB_PTE_XWE(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonr = DTB_PTE_FONR(ipr[AlphaISA::IPR_DTB_PTE]);
pte.fonw = DTB_PTE_FONW(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asma = DTB_PTE_ASMA(ipr[AlphaISA::IPR_DTB_PTE]);
pte.asn = DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]);
// insert new TAG/PTE value into data TLB
dtb->insert(val, pte);
}
break;
case AlphaISA::IPR_ITB_PTE: {
struct AlphaISA::PTE pte;
// FIXME: granularity hints NYI...
if (ITB_PTE_GH(val) != 0)
panic("PTE GH field != 0");
// write entire quad
ipr[idx] = val;
// construct PTE for new entry
pte.ppn = ITB_PTE_PPN(val);
pte.xre = ITB_PTE_XRE(val);
pte.xwe = 0;
pte.fonr = ITB_PTE_FONR(val);
pte.fonw = ITB_PTE_FONW(val);
pte.asma = ITB_PTE_ASMA(val);
pte.asn = ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]);
// insert new TAG/PTE value into data TLB
itb->insert(ipr[AlphaISA::IPR_ITB_TAG], pte);
}
break;
case AlphaISA::IPR_ITB_IA:
// really a control write
ipr[idx] = 0;
itb->flushAll();
break;
case AlphaISA::IPR_ITB_IAP:
// really a control write
ipr[idx] = 0;
itb->flushProcesses();
break;
case AlphaISA::IPR_ITB_IS:
// really a control write
ipr[idx] = val;
itb->flushAddr(val, ITB_ASN_ASN(ipr[AlphaISA::IPR_ITB_ASN]));
break;
default:
// invalid IPR
return new UnimplementedOpcodeFault;
}
// no error...
return NoFault;
}
/**
* Check for special simulator handling of specific PAL calls.
* If return value is false, actual PAL call will be suppressed.
*/
bool
ExecContext::simPalCheck(int palFunc)
{
kernelStats->callpal(palFunc);
switch (palFunc) {
case PAL::halt:
halt();
if (--System::numSystemsRunning == 0)
new SimExitEvent("all cpus halted");
break;
case PAL::bpt:
case PAL::bugchk:
if (system->breakpoint())
return false;
break;
}
return true;
}
//Forward instantiation for FastCPU object
template
void AlphaISA::processInterrupts(FastCPU *xc);
//Forward instantiation for FastCPU object
template
void AlphaISA::zeroRegisters(FastCPU *xc);
#endif // FULL_SYSTEM