gem5/src/sim/system.cc
Andreas Hansson b00949d88b MEM: Enable multiple distributed generalized memories
This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.

--HG--
rename : src/mem/PhysicalMemory.py => src/mem/AbstractMemory.py
rename : src/mem/PhysicalMemory.py => src/mem/SimpleMemory.py
rename : src/mem/physical.cc => src/mem/abstract_mem.cc
rename : src/mem/physical.hh => src/mem/abstract_mem.hh
rename : src/mem/physical.cc => src/mem/simple_mem.cc
rename : src/mem/physical.hh => src/mem/simple_mem.hh
2012-04-06 13:46:31 -04:00

442 lines
12 KiB
C++

/*
* Copyright (c) 2011-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2003-2006 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Lisa Hsu
* Nathan Binkert
* Ali Saidi
* Rick Strong
*/
#include "arch/isa_traits.hh"
#include "arch/remote_gdb.hh"
#include "arch/utility.hh"
#include "arch/vtophys.hh"
#include "base/loader/object_file.hh"
#include "base/loader/symtab.hh"
#include "base/trace.hh"
#include "config/the_isa.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "debug/WorkItems.hh"
#include "kern/kernel_stats.hh"
#include "mem/physical.hh"
#include "params/System.hh"
#include "sim/byteswap.hh"
#include "sim/debug.hh"
#include "sim/full_system.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
vector<System *> System::systemList;
int System::numSystemsRunning = 0;
System::System(Params *p)
: MemObject(p), _systemPort("system_port", this),
_numContexts(0),
pagePtr(0),
init_param(p->init_param),
physProxy(_systemPort),
virtProxy(_systemPort),
loadAddrMask(p->load_addr_mask),
nextPID(0),
physmem(p->memories),
memoryMode(p->mem_mode),
workItemsBegin(0),
workItemsEnd(0),
numWorkIds(p->num_work_ids),
_params(p),
totalNumInsts(0),
instEventQueue("system instruction-based event queue")
{
// add self to global system list
systemList.push_back(this);
if (FullSystem) {
kernelSymtab = new SymbolTable;
if (!debugSymbolTable)
debugSymbolTable = new SymbolTable;
}
// Get the generic system master IDs
MasterID tmp_id M5_VAR_USED;
tmp_id = getMasterId("writebacks");
assert(tmp_id == Request::wbMasterId);
tmp_id = getMasterId("functional");
assert(tmp_id == Request::funcMasterId);
tmp_id = getMasterId("interrupt");
assert(tmp_id == Request::intMasterId);
if (FullSystem) {
if (params()->kernel == "") {
inform("No kernel set for full system simulation. "
"Assuming you know what you're doing if not SPARC ISA\n");
} else {
// Get the kernel code
kernel = createObjectFile(params()->kernel);
inform("kernel located at: %s", params()->kernel);
if (kernel == NULL)
fatal("Could not load kernel file %s", params()->kernel);
// setup entry points
kernelStart = kernel->textBase();
kernelEnd = kernel->bssBase() + kernel->bssSize();
kernelEntry = kernel->entryPoint();
// load symbols
if (!kernel->loadGlobalSymbols(kernelSymtab))
fatal("could not load kernel symbols\n");
if (!kernel->loadLocalSymbols(kernelSymtab))
fatal("could not load kernel local symbols\n");
if (!kernel->loadGlobalSymbols(debugSymbolTable))
fatal("could not load kernel symbols\n");
if (!kernel->loadLocalSymbols(debugSymbolTable))
fatal("could not load kernel local symbols\n");
// Loading only needs to happen once and after memory system is
// connected so it will happen in initState()
}
}
// increment the number of running systms
numSystemsRunning++;
}
System::~System()
{
delete kernelSymtab;
delete kernel;
for (uint32_t j = 0; j < numWorkIds; j++)
delete workItemStats[j];
}
void
System::init()
{
// check that the system port is connected
if (!_systemPort.isConnected())
panic("System port on %s is not connected.\n", name());
}
MasterPort&
System::getMasterPort(const std::string &if_name, int idx)
{
// no need to distinguish at the moment (besides checking)
return _systemPort;
}
void
System::setMemoryMode(Enums::MemoryMode mode)
{
assert(getState() == Drained);
memoryMode = mode;
}
bool System::breakpoint()
{
if (remoteGDB.size())
return remoteGDB[0]->breakpoint();
return false;
}
/**
* Setting rgdb_wait to a positive integer waits for a remote debugger to
* connect to that context ID before continuing. This should really
be a parameter on the CPU object or something...
*/
int rgdb_wait = -1;
int
System::registerThreadContext(ThreadContext *tc, int assigned)
{
int id;
if (assigned == -1) {
for (id = 0; id < threadContexts.size(); id++) {
if (!threadContexts[id])
break;
}
if (threadContexts.size() <= id)
threadContexts.resize(id + 1);
} else {
if (threadContexts.size() <= assigned)
threadContexts.resize(assigned + 1);
id = assigned;
}
if (threadContexts[id])
fatal("Cannot have two CPUs with the same id (%d)\n", id);
threadContexts[id] = tc;
_numContexts++;
int port = getRemoteGDBPort();
if (port) {
RemoteGDB *rgdb = new RemoteGDB(this, tc);
GDBListener *gdbl = new GDBListener(rgdb, port + id);
gdbl->listen();
if (rgdb_wait != -1 && rgdb_wait == id)
gdbl->accept();
if (remoteGDB.size() <= id) {
remoteGDB.resize(id + 1);
}
remoteGDB[id] = rgdb;
}
activeCpus.push_back(false);
return id;
}
int
System::numRunningContexts()
{
int running = 0;
for (int i = 0; i < _numContexts; ++i) {
if (threadContexts[i]->status() != ThreadContext::Halted)
++running;
}
return running;
}
void
System::initState()
{
int i;
if (FullSystem) {
for (i = 0; i < threadContexts.size(); i++)
TheISA::startupCPU(threadContexts[i], i);
// Moved from the constructor to here since it relies on the
// address map being resolved in the interconnect
/**
* Load the kernel code into memory
*/
if (params()->kernel != "") {
// Load program sections into memory
kernel->loadSections(physProxy, loadAddrMask);
DPRINTF(Loader, "Kernel start = %#x\n", kernelStart);
DPRINTF(Loader, "Kernel end = %#x\n", kernelEnd);
DPRINTF(Loader, "Kernel entry = %#x\n", kernelEntry);
DPRINTF(Loader, "Kernel loaded...\n");
}
}
activeCpus.clear();
if (!FullSystem)
return;
for (i = 0; i < threadContexts.size(); i++)
TheISA::startupCPU(threadContexts[i], i);
}
void
System::replaceThreadContext(ThreadContext *tc, int context_id)
{
if (context_id >= threadContexts.size()) {
panic("replaceThreadContext: bad id, %d >= %d\n",
context_id, threadContexts.size());
}
threadContexts[context_id] = tc;
if (context_id < remoteGDB.size())
remoteGDB[context_id]->replaceThreadContext(tc);
}
Addr
System::allocPhysPages(int npages)
{
Addr return_addr = pagePtr << LogVMPageSize;
pagePtr += npages;
if (pagePtr > physmem.totalSize())
fatal("Out of memory, please increase size of physical memory.");
return return_addr;
}
Addr
System::memSize() const
{
return physmem.totalSize();
}
Addr
System::freeMemSize() const
{
return physmem.totalSize() - (pagePtr << LogVMPageSize);
}
bool
System::isMemAddr(Addr addr) const
{
return physmem.isMemAddr(addr);
}
void
System::resume()
{
SimObject::resume();
totalNumInsts = 0;
}
void
System::serialize(ostream &os)
{
if (FullSystem)
kernelSymtab->serialize("kernel_symtab", os);
SERIALIZE_SCALAR(pagePtr);
SERIALIZE_SCALAR(nextPID);
}
void
System::unserialize(Checkpoint *cp, const string &section)
{
if (FullSystem)
kernelSymtab->unserialize("kernel_symtab", cp, section);
UNSERIALIZE_SCALAR(pagePtr);
UNSERIALIZE_SCALAR(nextPID);
}
void
System::regStats()
{
for (uint32_t j = 0; j < numWorkIds ; j++) {
workItemStats[j] = new Stats::Histogram();
stringstream namestr;
ccprintf(namestr, "work_item_type%d", j);
workItemStats[j]->init(20)
.name(name() + "." + namestr.str())
.desc("Run time stat for" + namestr.str())
.prereq(*workItemStats[j]);
}
}
void
System::workItemEnd(uint32_t tid, uint32_t workid)
{
std::pair<uint32_t,uint32_t> p(tid, workid);
if (!lastWorkItemStarted.count(p))
return;
Tick samp = curTick() - lastWorkItemStarted[p];
DPRINTF(WorkItems, "Work item end: %d\t%d\t%lld\n", tid, workid, samp);
if (workid >= numWorkIds)
fatal("Got workid greater than specified in system configuration\n");
workItemStats[workid]->sample(samp);
lastWorkItemStarted.erase(p);
}
void
System::printSystems()
{
vector<System *>::iterator i = systemList.begin();
vector<System *>::iterator end = systemList.end();
for (; i != end; ++i) {
System *sys = *i;
cerr << "System " << sys->name() << ": " << hex << sys << endl;
}
}
void
printSystems()
{
System::printSystems();
}
MasterID
System::getMasterId(std::string master_name)
{
// strip off system name if the string starts with it
if (master_name.size() > name().size() &&
master_name.compare(0, name().size(), name()) == 0)
master_name = master_name.erase(0, name().size() + 1);
// CPUs in switch_cpus ask for ids again after switching
for (int i = 0; i < masterIds.size(); i++) {
if (masterIds[i] == master_name) {
return i;
}
}
// todo: Check if stats are enabled yet
// I just don't know a good way to do it
if (false)
fatal("Can't request a masterId after regStats(). \
You must do so in init().\n");
masterIds.push_back(master_name);
return masterIds.size() - 1;
}
std::string
System::getMasterName(MasterID master_id)
{
if (master_id >= masterIds.size())
fatal("Invalid master_id passed to getMasterName()\n");
return masterIds[master_id];
}
const char *System::MemoryModeStrings[3] = {"invalid", "atomic",
"timing"};
System *
SystemParams::create()
{
return new System(this);
}