gem5/src/cpu/o3/iew.hh
Matt Horsnell 739c6df94e base: add support for probe points and common probes
The probe patch is motivated by the desire to move analytical and trace code
away from functional code. This is achieved by the probe interface which is
essentially a glorified observer model.

What this means to users:
* add a probe point and a "notify" call at the source of an "event"
* add an isolated module, that is being used to carry out *your* analysis (e.g. generate a trace)
* register that module as a probe listener
Note: an example is given for reference in src/cpu/o3/simple_trace.[hh|cc] and src/cpu/SimpleTrace.py

What is happening under the hood:
* every SimObject maintains has a ProbeManager.
* during initialization (src/python/m5/simulate.py) first regProbePoints and
  the regProbeListeners is called on each SimObject.  this hooks up the probe
  point notify calls with the listeners.

FAQs:
Why did you develop probe points:
* to remove trace, stats gathering, analytical code out of the functional code.
* the belief that probes could be generically useful.

What is a probe point:
* a probe point is used to notify upon a given event (e.g. cpu commits an instruction)

What is a probe listener:
* a class that handles whatever the user wishes to do when they are notified
  about an event.

What can be passed on notify:
* probe points are templates, and so the user can generate probes that pass any
  type of argument (by const reference) to a listener.

What relationships can be generated (1:1, 1:N, N:M etc):
* there isn't a restriction. You can hook probe points and listeners up in a
  1:1, 1:N, N:M relationship. They become useful when a number of modules
  listen to the same probe points. The idea being that you can add a small
  number of probes into the source code and develop a larger number of useful
  analysis modules that use information passed by the probes.

Can you give examples:
* adding a probe point to the cpu's commit method allows you to build a trace
  module (outputting assembler), you could re-use this to gather instruction
  distribution (arithmetic, load/store, conditional, control flow) stats.

Why is the probe interface currently restricted to passing a const reference:
* the desire, initially at least, is to allow an interface to observe
  functionality, but not to change functionality.
* of course this can be subverted by const-casting.

What is the performance impact of adding probes:
* when nothing is actively listening to the probes they should have a
  relatively minor impact. Profiling has suggested even with a large number of
  probes (60) the impact of them (when not active) is very minimal (<1%).
2014-01-24 15:29:30 -06:00

549 lines
18 KiB
C++

/*
* Copyright (c) 2010-2012 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
*/
#ifndef __CPU_O3_IEW_HH__
#define __CPU_O3_IEW_HH__
#include <queue>
#include <set>
#include "base/statistics.hh"
#include "cpu/o3/comm.hh"
#include "cpu/o3/lsq.hh"
#include "cpu/o3/scoreboard.hh"
#include "cpu/timebuf.hh"
#include "debug/IEW.hh"
#include "sim/probe/probe.hh"
struct DerivO3CPUParams;
class FUPool;
/**
* DefaultIEW handles both single threaded and SMT IEW
* (issue/execute/writeback). It handles the dispatching of
* instructions to the LSQ/IQ as part of the issue stage, and has the
* IQ try to issue instructions each cycle. The execute latency is
* actually tied into the issue latency to allow the IQ to be able to
* do back-to-back scheduling without having to speculatively schedule
* instructions. This happens by having the IQ have access to the
* functional units, and the IQ gets the execution latencies from the
* FUs when it issues instructions. Instructions reach the execute
* stage on the last cycle of their execution, which is when the IQ
* knows to wake up any dependent instructions, allowing back to back
* scheduling. The execute portion of IEW separates memory
* instructions from non-memory instructions, either telling the LSQ
* to execute the instruction, or executing the instruction directly.
* The writeback portion of IEW completes the instructions by waking
* up any dependents, and marking the register ready on the
* scoreboard.
*/
template<class Impl>
class DefaultIEW
{
private:
//Typedefs from Impl
typedef typename Impl::CPUPol CPUPol;
typedef typename Impl::DynInstPtr DynInstPtr;
typedef typename Impl::O3CPU O3CPU;
typedef typename CPUPol::IQ IQ;
typedef typename CPUPol::RenameMap RenameMap;
typedef typename CPUPol::LSQ LSQ;
typedef typename CPUPol::TimeStruct TimeStruct;
typedef typename CPUPol::IEWStruct IEWStruct;
typedef typename CPUPol::RenameStruct RenameStruct;
typedef typename CPUPol::IssueStruct IssueStruct;
public:
/** Overall IEW stage status. Used to determine if the CPU can
* deschedule itself due to a lack of activity.
*/
enum Status {
Active,
Inactive
};
/** Status for Issue, Execute, and Writeback stages. */
enum StageStatus {
Running,
Blocked,
Idle,
StartSquash,
Squashing,
Unblocking
};
private:
/** Overall stage status. */
Status _status;
/** Dispatch status. */
StageStatus dispatchStatus[Impl::MaxThreads];
/** Execute status. */
StageStatus exeStatus;
/** Writeback status. */
StageStatus wbStatus;
/** Probe points. */
ProbePointArg<DynInstPtr> *ppMispredict;
ProbePointArg<DynInstPtr> *ppDispatch;
public:
/** Constructs a DefaultIEW with the given parameters. */
DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params);
/** Returns the name of the DefaultIEW stage. */
std::string name() const;
/** Registers statistics. */
void regStats();
/** Registers probes. */
void regProbePoints();
/** Initializes stage; sends back the number of free IQ and LSQ entries. */
void startupStage();
/** Sets main time buffer used for backwards communication. */
void setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr);
/** Sets time buffer for getting instructions coming from rename. */
void setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr);
/** Sets time buffer to pass on instructions to commit. */
void setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr);
/** Sets pointer to list of active threads. */
void setActiveThreads(std::list<ThreadID> *at_ptr);
/** Sets pointer to the scoreboard. */
void setScoreboard(Scoreboard *sb_ptr);
/** Perform sanity checks after a drain. */
void drainSanityCheck() const;
/** Has the stage drained? */
bool isDrained() const;
/** Takes over from another CPU's thread. */
void takeOverFrom();
/** Squashes instructions in IEW for a specific thread. */
void squash(ThreadID tid);
/** Wakes all dependents of a completed instruction. */
void wakeDependents(DynInstPtr &inst);
/** Tells memory dependence unit that a memory instruction needs to be
* rescheduled. It will re-execute once replayMemInst() is called.
*/
void rescheduleMemInst(DynInstPtr &inst);
/** Re-executes all rescheduled memory instructions. */
void replayMemInst(DynInstPtr &inst);
/** Sends an instruction to commit through the time buffer. */
void instToCommit(DynInstPtr &inst);
/** Inserts unused instructions of a thread into the skid buffer. */
void skidInsert(ThreadID tid);
/** Returns the max of the number of entries in all of the skid buffers. */
int skidCount();
/** Returns if all of the skid buffers are empty. */
bool skidsEmpty();
/** Updates overall IEW status based on all of the stages' statuses. */
void updateStatus();
/** Resets entries of the IQ and the LSQ. */
void resetEntries();
/** Tells the CPU to wakeup if it has descheduled itself due to no
* activity. Used mainly by the LdWritebackEvent.
*/
void wakeCPU();
/** Reports to the CPU that there is activity this cycle. */
void activityThisCycle();
/** Tells CPU that the IEW stage is active and running. */
inline void activateStage();
/** Tells CPU that the IEW stage is inactive and idle. */
inline void deactivateStage();
/** Returns if the LSQ has any stores to writeback. */
bool hasStoresToWB() { return ldstQueue.hasStoresToWB(); }
/** Returns if the LSQ has any stores to writeback. */
bool hasStoresToWB(ThreadID tid) { return ldstQueue.hasStoresToWB(tid); }
void incrWb(InstSeqNum &sn)
{
++wbOutstanding;
if (wbOutstanding == wbMax)
ableToIssue = false;
DPRINTF(IEW, "wbOutstanding: %i [sn:%lli]\n", wbOutstanding, sn);
assert(wbOutstanding <= wbMax);
#ifdef DEBUG
wbList.insert(sn);
#endif
}
void decrWb(InstSeqNum &sn)
{
if (wbOutstanding == wbMax)
ableToIssue = true;
wbOutstanding--;
DPRINTF(IEW, "wbOutstanding: %i [sn:%lli]\n", wbOutstanding, sn);
assert(wbOutstanding >= 0);
#ifdef DEBUG
assert(wbList.find(sn) != wbList.end());
wbList.erase(sn);
#endif
}
#ifdef DEBUG
std::set<InstSeqNum> wbList;
void dumpWb()
{
std::set<InstSeqNum>::iterator wb_it = wbList.begin();
while (wb_it != wbList.end()) {
cprintf("[sn:%lli]\n",
(*wb_it));
wb_it++;
}
}
#endif
bool canIssue() { return ableToIssue; }
bool ableToIssue;
/** Check misprediction */
void checkMisprediction(DynInstPtr &inst);
private:
/** Sends commit proper information for a squash due to a branch
* mispredict.
*/
void squashDueToBranch(DynInstPtr &inst, ThreadID tid);
/** Sends commit proper information for a squash due to a memory order
* violation.
*/
void squashDueToMemOrder(DynInstPtr &inst, ThreadID tid);
/** Sends commit proper information for a squash due to memory becoming
* blocked (younger issued instructions must be retried).
*/
void squashDueToMemBlocked(DynInstPtr &inst, ThreadID tid);
/** Sets Dispatch to blocked, and signals back to other stages to block. */
void block(ThreadID tid);
/** Unblocks Dispatch if the skid buffer is empty, and signals back to
* other stages to unblock.
*/
void unblock(ThreadID tid);
/** Determines proper actions to take given Dispatch's status. */
void dispatch(ThreadID tid);
/** Dispatches instructions to IQ and LSQ. */
void dispatchInsts(ThreadID tid);
/** Executes instructions. In the case of memory operations, it informs the
* LSQ to execute the instructions. Also handles any redirects that occur
* due to the executed instructions.
*/
void executeInsts();
/** Writebacks instructions. In our model, the instruction's execute()
* function atomically reads registers, executes, and writes registers.
* Thus this writeback only wakes up dependent instructions, and informs
* the scoreboard of registers becoming ready.
*/
void writebackInsts();
/** Returns the number of valid, non-squashed instructions coming from
* rename to dispatch.
*/
unsigned validInstsFromRename();
/** Reads the stall signals. */
void readStallSignals(ThreadID tid);
/** Checks if any of the stall conditions are currently true. */
bool checkStall(ThreadID tid);
/** Processes inputs and changes state accordingly. */
void checkSignalsAndUpdate(ThreadID tid);
/** Removes instructions from rename from a thread's instruction list. */
void emptyRenameInsts(ThreadID tid);
/** Sorts instructions coming from rename into lists separated by thread. */
void sortInsts();
public:
/** Ticks IEW stage, causing Dispatch, the IQ, the LSQ, Execute, and
* Writeback to run for one cycle.
*/
void tick();
private:
/** Updates execution stats based on the instruction. */
void updateExeInstStats(DynInstPtr &inst);
/** Pointer to main time buffer used for backwards communication. */
TimeBuffer<TimeStruct> *timeBuffer;
/** Wire to write information heading to previous stages. */
typename TimeBuffer<TimeStruct>::wire toFetch;
/** Wire to get commit's output from backwards time buffer. */
typename TimeBuffer<TimeStruct>::wire fromCommit;
/** Wire to write information heading to previous stages. */
typename TimeBuffer<TimeStruct>::wire toRename;
/** Rename instruction queue interface. */
TimeBuffer<RenameStruct> *renameQueue;
/** Wire to get rename's output from rename queue. */
typename TimeBuffer<RenameStruct>::wire fromRename;
/** Issue stage queue. */
TimeBuffer<IssueStruct> issueToExecQueue;
/** Wire to read information from the issue stage time queue. */
typename TimeBuffer<IssueStruct>::wire fromIssue;
/**
* IEW stage time buffer. Holds ROB indices of instructions that
* can be marked as completed.
*/
TimeBuffer<IEWStruct> *iewQueue;
/** Wire to write infromation heading to commit. */
typename TimeBuffer<IEWStruct>::wire toCommit;
/** Queue of all instructions coming from rename this cycle. */
std::queue<DynInstPtr> insts[Impl::MaxThreads];
/** Skid buffer between rename and IEW. */
std::queue<DynInstPtr> skidBuffer[Impl::MaxThreads];
/** Scoreboard pointer. */
Scoreboard* scoreboard;
private:
/** CPU pointer. */
O3CPU *cpu;
/** Records if IEW has written to the time buffer this cycle, so that the
* CPU can deschedule itself if there is no activity.
*/
bool wroteToTimeBuffer;
/** Source of possible stalls. */
struct Stalls {
bool commit;
};
/** Stages that are telling IEW to stall. */
Stalls stalls[Impl::MaxThreads];
/** Debug function to print instructions that are issued this cycle. */
void printAvailableInsts();
public:
/** Instruction queue. */
IQ instQueue;
/** Load / store queue. */
LSQ ldstQueue;
/** Pointer to the functional unit pool. */
FUPool *fuPool;
/** Records if the LSQ needs to be updated on the next cycle, so that
* IEW knows if there will be activity on the next cycle.
*/
bool updateLSQNextCycle;
private:
/** Records if there is a fetch redirect on this cycle for each thread. */
bool fetchRedirect[Impl::MaxThreads];
/** Records if the queues have been changed (inserted or issued insts),
* so that IEW knows to broadcast the updated amount of free entries.
*/
bool updatedQueues;
/** Commit to IEW delay. */
Cycles commitToIEWDelay;
/** Rename to IEW delay. */
Cycles renameToIEWDelay;
/**
* Issue to execute delay. What this actually represents is
* the amount of time it takes for an instruction to wake up, be
* scheduled, and sent to a FU for execution.
*/
Cycles issueToExecuteDelay;
/** Width of dispatch, in instructions. */
unsigned dispatchWidth;
/** Width of issue, in instructions. */
unsigned issueWidth;
/** Index into queue of instructions being written back. */
unsigned wbNumInst;
/** Cycle number within the queue of instructions being written back.
* Used in case there are too many instructions writing back at the current
* cycle and writesbacks need to be scheduled for the future. See comments
* in instToCommit().
*/
unsigned wbCycle;
/** Number of instructions in flight that will writeback. */
/** Number of instructions in flight that will writeback. */
int wbOutstanding;
/** Writeback width. */
unsigned wbWidth;
/** Writeback width * writeback depth, where writeback depth is
* the number of cycles of writing back instructions that can be
* buffered. */
unsigned wbMax;
/** Number of active threads. */
ThreadID numThreads;
/** Pointer to list of active threads. */
std::list<ThreadID> *activeThreads;
/** Maximum size of the skid buffer. */
unsigned skidBufferMax;
/** Stat for total number of idle cycles. */
Stats::Scalar iewIdleCycles;
/** Stat for total number of squashing cycles. */
Stats::Scalar iewSquashCycles;
/** Stat for total number of blocking cycles. */
Stats::Scalar iewBlockCycles;
/** Stat for total number of unblocking cycles. */
Stats::Scalar iewUnblockCycles;
/** Stat for total number of instructions dispatched. */
Stats::Scalar iewDispatchedInsts;
/** Stat for total number of squashed instructions dispatch skips. */
Stats::Scalar iewDispSquashedInsts;
/** Stat for total number of dispatched load instructions. */
Stats::Scalar iewDispLoadInsts;
/** Stat for total number of dispatched store instructions. */
Stats::Scalar iewDispStoreInsts;
/** Stat for total number of dispatched non speculative instructions. */
Stats::Scalar iewDispNonSpecInsts;
/** Stat for number of times the IQ becomes full. */
Stats::Scalar iewIQFullEvents;
/** Stat for number of times the LSQ becomes full. */
Stats::Scalar iewLSQFullEvents;
/** Stat for total number of memory ordering violation events. */
Stats::Scalar memOrderViolationEvents;
/** Stat for total number of incorrect predicted taken branches. */
Stats::Scalar predictedTakenIncorrect;
/** Stat for total number of incorrect predicted not taken branches. */
Stats::Scalar predictedNotTakenIncorrect;
/** Stat for total number of mispredicted branches detected at execute. */
Stats::Formula branchMispredicts;
/** Stat for total number of executed instructions. */
Stats::Scalar iewExecutedInsts;
/** Stat for total number of executed load instructions. */
Stats::Vector iewExecLoadInsts;
/** Stat for total number of executed store instructions. */
// Stats::Scalar iewExecStoreInsts;
/** Stat for total number of squashed instructions skipped at execute. */
Stats::Scalar iewExecSquashedInsts;
/** Number of executed software prefetches. */
Stats::Vector iewExecutedSwp;
/** Number of executed nops. */
Stats::Vector iewExecutedNop;
/** Number of executed meomory references. */
Stats::Vector iewExecutedRefs;
/** Number of executed branches. */
Stats::Vector iewExecutedBranches;
/** Number of executed store instructions. */
Stats::Formula iewExecStoreInsts;
/** Number of instructions executed per cycle. */
Stats::Formula iewExecRate;
/** Number of instructions sent to commit. */
Stats::Vector iewInstsToCommit;
/** Number of instructions that writeback. */
Stats::Vector writebackCount;
/** Number of instructions that wake consumers. */
Stats::Vector producerInst;
/** Number of instructions that wake up from producers. */
Stats::Vector consumerInst;
/** Number of instructions that were delayed in writing back due
* to resource contention.
*/
Stats::Vector wbPenalized;
/** Number of instructions per cycle written back. */
Stats::Formula wbRate;
/** Average number of woken instructions per writeback. */
Stats::Formula wbFanout;
/** Number of instructions per cycle delayed in writing back . */
Stats::Formula wbPenalizedRate;
};
#endif // __CPU_O3_IEW_HH__