f3358e5f7b
cpu/o3/2bit_local_pred.cc: cpu/o3/2bit_local_pred.hh: cpu/o3/bpred_unit.hh: cpu/o3/bpred_unit_impl.hh: cpu/o3/btb.cc: cpu/o3/btb.hh: cpu/o3/commit.hh: cpu/o3/commit_impl.hh: cpu/o3/cpu.cc: cpu/o3/cpu.hh: cpu/o3/decode.hh: cpu/o3/decode_impl.hh: cpu/o3/fetch.hh: cpu/o3/fetch_impl.hh: cpu/o3/fu_pool.cc: cpu/o3/fu_pool.hh: cpu/o3/iew.hh: cpu/o3/iew_impl.hh: cpu/o3/inst_queue.hh: cpu/o3/inst_queue_impl.hh: cpu/o3/lsq.hh: cpu/o3/lsq_impl.hh: cpu/o3/lsq_unit.hh: cpu/o3/lsq_unit_impl.hh: cpu/o3/mem_dep_unit.hh: cpu/o3/mem_dep_unit_impl.hh: cpu/o3/ras.cc: cpu/o3/ras.hh: cpu/o3/rename.hh: cpu/o3/rename_impl.hh: cpu/o3/rob.hh: cpu/o3/rob_impl.hh: cpu/o3/sat_counter.cc: cpu/o3/sat_counter.hh: cpu/o3/thread_state.hh: Handle switching out and taking over. Needs to be able to reset all state. cpu/o3/alpha_cpu_impl.hh: Handle taking over from another XC. --HG-- extra : convert_revision : b936e826f0f8a18319bfa940ff35097b4192b449
1599 lines
44 KiB
C++
1599 lines
44 KiB
C++
/*
|
|
* Copyright (c) 2004-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
// @todo: Fix the instantaneous communication among all the stages within
|
|
// iew. There's a clear delay between issue and execute, yet backwards
|
|
// communication happens simultaneously.
|
|
|
|
#include <queue>
|
|
|
|
#include "base/timebuf.hh"
|
|
#include "cpu/o3/fu_pool.hh"
|
|
#include "cpu/o3/iew.hh"
|
|
|
|
using namespace std;
|
|
|
|
template<class Impl>
|
|
DefaultIEW<Impl>::LdWritebackEvent::LdWritebackEvent(DynInstPtr &_inst,
|
|
DefaultIEW<Impl> *_iew)
|
|
: Event(&mainEventQueue), inst(_inst), iewStage(_iew)
|
|
{
|
|
this->setFlags(Event::AutoDelete);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::LdWritebackEvent::process()
|
|
{
|
|
DPRINTF(IEW, "Load writeback event [sn:%lli]\n", inst->seqNum);
|
|
DPRINTF(Activity, "Activity: Ld Writeback event [sn:%lli]\n", inst->seqNum);
|
|
|
|
//iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum);
|
|
|
|
if (inst->isSquashed() || iewStage->isSwitchedOut()) {
|
|
inst = NULL;
|
|
return;
|
|
}
|
|
|
|
iewStage->wakeCPU();
|
|
|
|
if (!inst->isExecuted()) {
|
|
inst->setExecuted();
|
|
|
|
// Execute again to copy data to proper place.
|
|
if (inst->isStore()) {
|
|
inst->completeAcc();
|
|
}
|
|
}
|
|
|
|
// Need to insert instruction into queue to commit
|
|
iewStage->instToCommit(inst);
|
|
|
|
//wroteToTimeBuffer = true;
|
|
iewStage->activityThisCycle();
|
|
|
|
inst = NULL;
|
|
}
|
|
|
|
template<class Impl>
|
|
const char *
|
|
DefaultIEW<Impl>::LdWritebackEvent::description()
|
|
{
|
|
return "Load writeback event";
|
|
}
|
|
|
|
template<class Impl>
|
|
DefaultIEW<Impl>::DefaultIEW(Params *params)
|
|
: // Just make this time buffer really big for now
|
|
// @todo: Make this into a parameter.
|
|
issueToExecQueue(5, 5),
|
|
instQueue(params),
|
|
ldstQueue(params),
|
|
fuPool(params->fuPool),
|
|
commitToIEWDelay(params->commitToIEWDelay),
|
|
renameToIEWDelay(params->renameToIEWDelay),
|
|
issueToExecuteDelay(params->issueToExecuteDelay),
|
|
issueReadWidth(params->issueWidth),
|
|
issueWidth(params->issueWidth),
|
|
executeWidth(params->executeWidth),
|
|
numThreads(params->numberOfThreads),
|
|
switchedOut(false)
|
|
{
|
|
DPRINTF(IEW, "executeIntWidth: %i.\n", params->executeIntWidth);
|
|
_status = Active;
|
|
exeStatus = Running;
|
|
wbStatus = Idle;
|
|
|
|
// Setup wire to read instructions coming from issue.
|
|
fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
|
|
|
|
// Instruction queue needs the queue between issue and execute.
|
|
instQueue.setIssueToExecuteQueue(&issueToExecQueue);
|
|
|
|
instQueue.setIEW(this);
|
|
ldstQueue.setIEW(this);
|
|
|
|
for (int i=0; i < numThreads; i++) {
|
|
dispatchStatus[i] = Running;
|
|
stalls[i].commit = false;
|
|
fetchRedirect[i] = false;
|
|
}
|
|
|
|
updateLSQNextCycle = false;
|
|
|
|
// @todo: Make into a parameter
|
|
skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
|
|
}
|
|
|
|
template <class Impl>
|
|
std::string
|
|
DefaultIEW<Impl>::name() const
|
|
{
|
|
return cpu->name() + ".iew";
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::regStats()
|
|
{
|
|
using namespace Stats;
|
|
|
|
instQueue.regStats();
|
|
|
|
//ldstQueue.regStats();
|
|
|
|
iewIdleCycles
|
|
.name(name() + ".iewIdleCycles")
|
|
.desc("Number of cycles IEW is idle");
|
|
|
|
iewSquashCycles
|
|
.name(name() + ".iewSquashCycles")
|
|
.desc("Number of cycles IEW is squashing");
|
|
|
|
iewBlockCycles
|
|
.name(name() + ".iewBlockCycles")
|
|
.desc("Number of cycles IEW is blocking");
|
|
|
|
iewUnblockCycles
|
|
.name(name() + ".iewUnblockCycles")
|
|
.desc("Number of cycles IEW is unblocking");
|
|
|
|
// iewWBInsts;
|
|
|
|
iewDispatchedInsts
|
|
.name(name() + ".iewDispatchedInsts")
|
|
.desc("Number of instructions dispatched to IQ");
|
|
|
|
iewDispSquashedInsts
|
|
.name(name() + ".iewDispSquashedInsts")
|
|
.desc("Number of squashed instructions skipped by dispatch");
|
|
|
|
iewDispLoadInsts
|
|
.name(name() + ".iewDispLoadInsts")
|
|
.desc("Number of dispatched load instructions");
|
|
|
|
iewDispStoreInsts
|
|
.name(name() + ".iewDispStoreInsts")
|
|
.desc("Number of dispatched store instructions");
|
|
|
|
iewDispNonSpecInsts
|
|
.name(name() + ".iewDispNonSpecInsts")
|
|
.desc("Number of dispatched non-speculative instructions");
|
|
|
|
iewIQFullEvents
|
|
.name(name() + ".iewIQFullEvents")
|
|
.desc("Number of times the IQ has become full, causing a stall");
|
|
|
|
iewLSQFullEvents
|
|
.name(name() + ".iewLSQFullEvents")
|
|
.desc("Number of times the LSQ has become full, causing a stall");
|
|
|
|
iewExecutedInsts
|
|
.name(name() + ".iewExecutedInsts")
|
|
.desc("Number of executed instructions");
|
|
|
|
iewExecLoadInsts
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".iewExecLoadInsts")
|
|
.desc("Number of load instructions executed")
|
|
.flags(total);
|
|
/*
|
|
iewExecStoreInsts
|
|
.name(name() + ".iewExecStoreInsts")
|
|
.desc("Number of store instructions executed");
|
|
*/
|
|
iewExecSquashedInsts
|
|
.name(name() + ".iewExecSquashedInsts")
|
|
.desc("Number of squashed instructions skipped in execute");
|
|
|
|
memOrderViolationEvents
|
|
.name(name() + ".memOrderViolationEvents")
|
|
.desc("Number of memory order violations");
|
|
|
|
predictedTakenIncorrect
|
|
.name(name() + ".predictedTakenIncorrect")
|
|
.desc("Number of branches that were predicted taken incorrectly");
|
|
|
|
predictedNotTakenIncorrect
|
|
.name(name() + ".predictedNotTakenIncorrect")
|
|
.desc("Number of branches that were predicted not taken incorrectly");
|
|
|
|
branchMispredicts
|
|
.name(name() + ".branchMispredicts")
|
|
.desc("Number of branch mispredicts detected at execute");
|
|
|
|
branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
|
|
|
|
exe_swp
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".EXEC:swp")
|
|
.desc("number of swp insts executed")
|
|
.flags(total)
|
|
;
|
|
|
|
exe_nop
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".EXEC:nop")
|
|
.desc("number of nop insts executed")
|
|
.flags(total)
|
|
;
|
|
|
|
exe_refs
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".EXEC:refs")
|
|
.desc("number of memory reference insts executed")
|
|
.flags(total)
|
|
;
|
|
|
|
exe_branches
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".EXEC:branches")
|
|
.desc("Number of branches executed")
|
|
.flags(total)
|
|
;
|
|
|
|
issue_rate
|
|
.name(name() + ".EXEC:rate")
|
|
.desc("Inst execution rate")
|
|
.flags(total)
|
|
;
|
|
issue_rate = iewExecutedInsts / cpu->numCycles;
|
|
|
|
iewExecStoreInsts
|
|
.name(name() + ".EXEC:stores")
|
|
.desc("Number of stores executed")
|
|
.flags(total)
|
|
;
|
|
iewExecStoreInsts = exe_refs - iewExecLoadInsts;
|
|
/*
|
|
for (int i=0; i<Num_OpClasses; ++i) {
|
|
stringstream subname;
|
|
subname << opClassStrings[i] << "_delay";
|
|
issue_delay_dist.subname(i, subname.str());
|
|
}
|
|
*/
|
|
//
|
|
// Other stats
|
|
//
|
|
|
|
iewInstsToCommit
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".WB:sent")
|
|
.desc("cumulative count of insts sent to commit")
|
|
.flags(total)
|
|
;
|
|
|
|
writeback_count
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".WB:count")
|
|
.desc("cumulative count of insts written-back")
|
|
.flags(total)
|
|
;
|
|
|
|
producer_inst
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".WB:producers")
|
|
.desc("num instructions producing a value")
|
|
.flags(total)
|
|
;
|
|
|
|
consumer_inst
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".WB:consumers")
|
|
.desc("num instructions consuming a value")
|
|
.flags(total)
|
|
;
|
|
|
|
wb_penalized
|
|
.init(cpu->number_of_threads)
|
|
.name(name() + ".WB:penalized")
|
|
.desc("number of instrctions required to write to 'other' IQ")
|
|
.flags(total)
|
|
;
|
|
|
|
wb_penalized_rate
|
|
.name(name() + ".WB:penalized_rate")
|
|
.desc ("fraction of instructions written-back that wrote to 'other' IQ")
|
|
.flags(total)
|
|
;
|
|
|
|
wb_penalized_rate = wb_penalized / writeback_count;
|
|
|
|
wb_fanout
|
|
.name(name() + ".WB:fanout")
|
|
.desc("average fanout of values written-back")
|
|
.flags(total)
|
|
;
|
|
|
|
wb_fanout = producer_inst / consumer_inst;
|
|
|
|
wb_rate
|
|
.name(name() + ".WB:rate")
|
|
.desc("insts written-back per cycle")
|
|
.flags(total)
|
|
;
|
|
wb_rate = writeback_count / cpu->numCycles;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::initStage()
|
|
{
|
|
for (int tid=0; tid < numThreads; tid++) {
|
|
toRename->iewInfo[tid].usedIQ = true;
|
|
toRename->iewInfo[tid].freeIQEntries =
|
|
instQueue.numFreeEntries(tid);
|
|
|
|
toRename->iewInfo[tid].usedLSQ = true;
|
|
toRename->iewInfo[tid].freeLSQEntries =
|
|
ldstQueue.numFreeEntries(tid);
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setCPU(FullCPU *cpu_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting CPU pointer.\n");
|
|
cpu = cpu_ptr;
|
|
|
|
instQueue.setCPU(cpu_ptr);
|
|
ldstQueue.setCPU(cpu_ptr);
|
|
|
|
cpu->activateStage(FullCPU::IEWIdx);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting time buffer pointer.\n");
|
|
timeBuffer = tb_ptr;
|
|
|
|
// Setup wire to read information from time buffer, from commit.
|
|
fromCommit = timeBuffer->getWire(-commitToIEWDelay);
|
|
|
|
// Setup wire to write information back to previous stages.
|
|
toRename = timeBuffer->getWire(0);
|
|
|
|
toFetch = timeBuffer->getWire(0);
|
|
|
|
// Instruction queue also needs main time buffer.
|
|
instQueue.setTimeBuffer(tb_ptr);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting rename queue pointer.\n");
|
|
renameQueue = rq_ptr;
|
|
|
|
// Setup wire to read information from rename queue.
|
|
fromRename = renameQueue->getWire(-renameToIEWDelay);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting IEW queue pointer.\n");
|
|
iewQueue = iq_ptr;
|
|
|
|
// Setup wire to write instructions to commit.
|
|
toCommit = iewQueue->getWire(0);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting active threads list pointer.\n");
|
|
activeThreads = at_ptr;
|
|
|
|
ldstQueue.setActiveThreads(at_ptr);
|
|
instQueue.setActiveThreads(at_ptr);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
|
|
{
|
|
DPRINTF(IEW, "Setting scoreboard pointer.\n");
|
|
scoreboard = sb_ptr;
|
|
}
|
|
|
|
#if 0
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::setPageTable(PageTable *pt_ptr)
|
|
{
|
|
ldstQueue.setPageTable(pt_ptr);
|
|
}
|
|
#endif
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::switchOut()
|
|
{
|
|
switchedOut = true;
|
|
instQueue.switchOut();
|
|
ldstQueue.switchOut();
|
|
fuPool->switchOut();
|
|
|
|
for (int i = 0; i < numThreads; i++) {
|
|
while (!insts[i].empty())
|
|
insts[i].pop();
|
|
while (!skidBuffer[i].empty())
|
|
skidBuffer[i].pop();
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::takeOverFrom()
|
|
{
|
|
_status = Active;
|
|
exeStatus = Running;
|
|
wbStatus = Idle;
|
|
switchedOut = false;
|
|
|
|
instQueue.takeOverFrom();
|
|
ldstQueue.takeOverFrom();
|
|
fuPool->takeOverFrom();
|
|
|
|
initStage();
|
|
cpu->activityThisCycle();
|
|
|
|
for (int i=0; i < numThreads; i++) {
|
|
dispatchStatus[i] = Running;
|
|
stalls[i].commit = false;
|
|
fetchRedirect[i] = false;
|
|
}
|
|
|
|
updateLSQNextCycle = false;
|
|
|
|
// @todo: Fix hardcoded number
|
|
for (int i = 0; i < 6; ++i) {
|
|
issueToExecQueue.advance();
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::squash(unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
|
|
tid);
|
|
|
|
// Tell the IQ to start squashing.
|
|
instQueue.squash(tid);
|
|
|
|
// Tell the LDSTQ to start squashing.
|
|
ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum,tid);
|
|
|
|
updatedQueues = true;
|
|
|
|
// Clear the skid buffer in case it has any data in it.
|
|
while (!skidBuffer[tid].empty()) {
|
|
|
|
if (skidBuffer[tid].front()->isLoad() ||
|
|
skidBuffer[tid].front()->isStore() ) {
|
|
toRename->iewInfo[tid].dispatchedToLSQ++;
|
|
}
|
|
|
|
toRename->iewInfo[tid].dispatched++;
|
|
|
|
skidBuffer[tid].pop();
|
|
}
|
|
|
|
while (!insts[tid].empty()) {
|
|
if (insts[tid].front()->isLoad() ||
|
|
insts[tid].front()->isStore() ) {
|
|
toRename->iewInfo[tid].dispatchedToLSQ++;
|
|
}
|
|
|
|
toRename->iewInfo[tid].dispatched++;
|
|
|
|
insts[tid].pop();
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
|
|
"[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
|
|
|
|
// Tell rename to squash through the time buffer.
|
|
toCommit->squash[tid] = true;
|
|
toCommit->squashedSeqNum[tid] = inst->seqNum;
|
|
toCommit->mispredPC[tid] = inst->readPC();
|
|
toCommit->nextPC[tid] = inst->readNextPC();
|
|
toCommit->branchMispredict[tid] = true;
|
|
// Prediction was incorrect, so send back inverse.
|
|
toCommit->branchTaken[tid] = inst->readNextPC() !=
|
|
(inst->readPC() + sizeof(TheISA::MachInst));
|
|
|
|
toCommit->includeSquashInst[tid] = false;
|
|
//toCommit->iewSquashNum[tid] = inst->seqNum;
|
|
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
|
|
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
|
|
|
|
// Tell rename to squash through the time buffer.
|
|
toCommit->squash[tid] = true;
|
|
toCommit->squashedSeqNum[tid] = inst->seqNum;
|
|
toCommit->nextPC[tid] = inst->readNextPC();
|
|
|
|
toCommit->includeSquashInst[tid] = false;
|
|
//toCommit->iewSquashNum[tid] = inst->seqNum;
|
|
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
|
|
"PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
|
|
|
|
toCommit->squash[tid] = true;
|
|
toCommit->squashedSeqNum[tid] = inst->seqNum;
|
|
toCommit->nextPC[tid] = inst->readPC();
|
|
|
|
toCommit->includeSquashInst[tid] = true;
|
|
|
|
ldstQueue.setLoadBlockedHandled(tid);
|
|
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::block(unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
|
|
|
|
if (dispatchStatus[tid] != Blocked &&
|
|
dispatchStatus[tid] != Unblocking) {
|
|
toRename->iewBlock[tid] = true;
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
// Add the current inputs to the skid buffer so they can be
|
|
// reprocessed when this stage unblocks.
|
|
skidInsert(tid);
|
|
|
|
// Set the status to Blocked.
|
|
dispatchStatus[tid] = Blocked;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::unblock(unsigned tid)
|
|
{
|
|
DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
|
|
"buffer %u.\n",tid, tid);
|
|
|
|
// If the skid bufffer is empty, signal back to previous stages to unblock.
|
|
// Also switch status to running.
|
|
if (skidBuffer[tid].empty()) {
|
|
toRename->iewUnblock[tid] = true;
|
|
wroteToTimeBuffer = true;
|
|
DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
|
|
dispatchStatus[tid] = Running;
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
|
|
{
|
|
instQueue.wakeDependents(inst);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
|
|
{
|
|
instQueue.rescheduleMemInst(inst);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
|
|
{
|
|
instQueue.replayMemInst(inst);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
|
|
{
|
|
// First check the time slot that this instruction will write
|
|
// to. If there are free write ports at the time, then go ahead
|
|
// and write the instruction to that time. If there are not,
|
|
// keep looking back to see where's the first time there's a
|
|
// free slot. What happens if you run out of free spaces?
|
|
// For now naively assume that all instructions take one cycle.
|
|
// Otherwise would have to look into the time buffer based on the
|
|
// latency of the instruction.
|
|
while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
|
|
++wbNumInst;
|
|
if (wbNumInst == issueWidth) {
|
|
++wbCycle;
|
|
wbNumInst = 0;
|
|
}
|
|
|
|
assert(wbCycle < 5);
|
|
}
|
|
|
|
// Add finished instruction to queue to commit.
|
|
(*iewQueue)[wbCycle].insts[wbNumInst] = inst;
|
|
(*iewQueue)[wbCycle].size++;
|
|
}
|
|
|
|
template <class Impl>
|
|
unsigned
|
|
DefaultIEW<Impl>::validInstsFromRename()
|
|
{
|
|
unsigned inst_count = 0;
|
|
|
|
for (int i=0; i<fromRename->size; i++) {
|
|
if (!fromRename->insts[i]->squashed)
|
|
inst_count++;
|
|
}
|
|
|
|
return inst_count;
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::skidInsert(unsigned tid)
|
|
{
|
|
DynInstPtr inst = NULL;
|
|
|
|
while (!insts[tid].empty()) {
|
|
inst = insts[tid].front();
|
|
|
|
insts[tid].pop();
|
|
|
|
DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
|
|
"dispatch skidBuffer %i\n",tid, inst->seqNum,
|
|
inst->readPC(),tid);
|
|
|
|
skidBuffer[tid].push(inst);
|
|
}
|
|
|
|
assert(skidBuffer[tid].size() <= skidBufferMax &&
|
|
"Skidbuffer Exceeded Max Size");
|
|
}
|
|
|
|
template<class Impl>
|
|
int
|
|
DefaultIEW<Impl>::skidCount()
|
|
{
|
|
int max=0;
|
|
|
|
list<unsigned>::iterator threads = (*activeThreads).begin();
|
|
|
|
while (threads != (*activeThreads).end()) {
|
|
unsigned thread_count = skidBuffer[*threads++].size();
|
|
if (max < thread_count)
|
|
max = thread_count;
|
|
}
|
|
|
|
return max;
|
|
}
|
|
|
|
template<class Impl>
|
|
bool
|
|
DefaultIEW<Impl>::skidsEmpty()
|
|
{
|
|
list<unsigned>::iterator threads = (*activeThreads).begin();
|
|
|
|
while (threads != (*activeThreads).end()) {
|
|
if (!skidBuffer[*threads++].empty())
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::updateStatus()
|
|
{
|
|
bool any_unblocking = false;
|
|
|
|
list<unsigned>::iterator threads = (*activeThreads).begin();
|
|
|
|
threads = (*activeThreads).begin();
|
|
|
|
while (threads != (*activeThreads).end()) {
|
|
unsigned tid = *threads++;
|
|
|
|
if (dispatchStatus[tid] == Unblocking) {
|
|
any_unblocking = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If there are no ready instructions waiting to be scheduled by the IQ,
|
|
// and there's no stores waiting to write back, and dispatch is not
|
|
// unblocking, then there is no internal activity for the IEW stage.
|
|
if (_status == Active && !instQueue.hasReadyInsts() &&
|
|
!ldstQueue.willWB() && !any_unblocking) {
|
|
DPRINTF(IEW, "IEW switching to idle\n");
|
|
|
|
deactivateStage();
|
|
|
|
_status = Inactive;
|
|
} else if (_status == Inactive && (instQueue.hasReadyInsts() ||
|
|
ldstQueue.willWB() ||
|
|
any_unblocking)) {
|
|
// Otherwise there is internal activity. Set to active.
|
|
DPRINTF(IEW, "IEW switching to active\n");
|
|
|
|
activateStage();
|
|
|
|
_status = Active;
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::resetEntries()
|
|
{
|
|
instQueue.resetEntries();
|
|
ldstQueue.resetEntries();
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::readStallSignals(unsigned tid)
|
|
{
|
|
if (fromCommit->commitBlock[tid]) {
|
|
stalls[tid].commit = true;
|
|
}
|
|
|
|
if (fromCommit->commitUnblock[tid]) {
|
|
assert(stalls[tid].commit);
|
|
stalls[tid].commit = false;
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
bool
|
|
DefaultIEW<Impl>::checkStall(unsigned tid)
|
|
{
|
|
bool ret_val(false);
|
|
|
|
if (stalls[tid].commit) {
|
|
DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
|
|
ret_val = true;
|
|
} else if (instQueue.isFull(tid)) {
|
|
DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid);
|
|
ret_val = true;
|
|
} else if (ldstQueue.isFull(tid)) {
|
|
DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
|
|
|
|
if (ldstQueue.numLoads(tid) > 0 ) {
|
|
|
|
DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
|
|
tid,ldstQueue.getLoadHeadSeqNum(tid));
|
|
}
|
|
|
|
if (ldstQueue.numStores(tid) > 0) {
|
|
|
|
DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
|
|
tid,ldstQueue.getStoreHeadSeqNum(tid));
|
|
}
|
|
|
|
ret_val = true;
|
|
} else if (ldstQueue.isStalled(tid)) {
|
|
DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
|
|
ret_val = true;
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
|
|
{
|
|
// Check if there's a squash signal, squash if there is
|
|
// Check stall signals, block if there is.
|
|
// If status was Blocked
|
|
// if so then go to unblocking
|
|
// If status was Squashing
|
|
// check if squashing is not high. Switch to running this cycle.
|
|
|
|
readStallSignals(tid);
|
|
|
|
if (fromCommit->commitInfo[tid].squash) {
|
|
squash(tid);
|
|
|
|
if (dispatchStatus[tid] == Blocked ||
|
|
dispatchStatus[tid] == Unblocking) {
|
|
toRename->iewUnblock[tid] = true;
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
dispatchStatus[tid] = Squashing;
|
|
|
|
fetchRedirect[tid] = false;
|
|
return;
|
|
}
|
|
|
|
if (fromCommit->commitInfo[tid].robSquashing) {
|
|
DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n");
|
|
|
|
dispatchStatus[tid] = Squashing;
|
|
|
|
return;
|
|
}
|
|
|
|
if (checkStall(tid)) {
|
|
block(tid);
|
|
dispatchStatus[tid] = Blocked;
|
|
return;
|
|
}
|
|
|
|
if (dispatchStatus[tid] == Blocked) {
|
|
// Status from previous cycle was blocked, but there are no more stall
|
|
// conditions. Switch over to unblocking.
|
|
DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
|
|
tid);
|
|
|
|
dispatchStatus[tid] = Unblocking;
|
|
|
|
unblock(tid);
|
|
|
|
return;
|
|
}
|
|
|
|
if (dispatchStatus[tid] == Squashing) {
|
|
// Switch status to running if rename isn't being told to block or
|
|
// squash this cycle.
|
|
DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
|
|
tid);
|
|
|
|
dispatchStatus[tid] = Running;
|
|
|
|
return;
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::sortInsts()
|
|
{
|
|
int insts_from_rename = fromRename->size;
|
|
|
|
for (int i = 0; i < numThreads; i++)
|
|
assert(insts[i].empty());
|
|
|
|
for (int i = 0; i < insts_from_rename; ++i) {
|
|
insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::wakeCPU()
|
|
{
|
|
cpu->wakeCPU();
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::activityThisCycle()
|
|
{
|
|
DPRINTF(Activity, "Activity this cycle.\n");
|
|
cpu->activityThisCycle();
|
|
}
|
|
|
|
template <class Impl>
|
|
inline void
|
|
DefaultIEW<Impl>::activateStage()
|
|
{
|
|
DPRINTF(Activity, "Activating stage.\n");
|
|
cpu->activateStage(FullCPU::IEWIdx);
|
|
}
|
|
|
|
template <class Impl>
|
|
inline void
|
|
DefaultIEW<Impl>::deactivateStage()
|
|
{
|
|
DPRINTF(Activity, "Deactivating stage.\n");
|
|
cpu->deactivateStage(FullCPU::IEWIdx);
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::dispatch(unsigned tid)
|
|
{
|
|
// If status is Running or idle,
|
|
// call dispatchInsts()
|
|
// If status is Unblocking,
|
|
// buffer any instructions coming from rename
|
|
// continue trying to empty skid buffer
|
|
// check if stall conditions have passed
|
|
|
|
if (dispatchStatus[tid] == Blocked) {
|
|
++iewBlockCycles;
|
|
|
|
} else if (dispatchStatus[tid] == Squashing) {
|
|
++iewSquashCycles;
|
|
}
|
|
|
|
// Dispatch should try to dispatch as many instructions as its bandwidth
|
|
// will allow, as long as it is not currently blocked.
|
|
if (dispatchStatus[tid] == Running ||
|
|
dispatchStatus[tid] == Idle) {
|
|
DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
|
|
"dispatch.\n", tid);
|
|
|
|
dispatchInsts(tid);
|
|
} else if (dispatchStatus[tid] == Unblocking) {
|
|
// Make sure that the skid buffer has something in it if the
|
|
// status is unblocking.
|
|
assert(!skidsEmpty());
|
|
|
|
// If the status was unblocking, then instructions from the skid
|
|
// buffer were used. Remove those instructions and handle
|
|
// the rest of unblocking.
|
|
dispatchInsts(tid);
|
|
|
|
++iewUnblockCycles;
|
|
|
|
if (validInstsFromRename() && dispatchedAllInsts) {
|
|
// Add the current inputs to the skid buffer so they can be
|
|
// reprocessed when this stage unblocks.
|
|
skidInsert(tid);
|
|
}
|
|
|
|
unblock(tid);
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::dispatchInsts(unsigned tid)
|
|
{
|
|
dispatchedAllInsts = true;
|
|
|
|
// Obtain instructions from skid buffer if unblocking, or queue from rename
|
|
// otherwise.
|
|
std::queue<DynInstPtr> &insts_to_dispatch =
|
|
dispatchStatus[tid] == Unblocking ?
|
|
skidBuffer[tid] : insts[tid];
|
|
|
|
int insts_to_add = insts_to_dispatch.size();
|
|
|
|
DynInstPtr inst;
|
|
bool add_to_iq = false;
|
|
int dis_num_inst = 0;
|
|
|
|
// Loop through the instructions, putting them in the instruction
|
|
// queue.
|
|
for ( ; dis_num_inst < insts_to_add &&
|
|
dis_num_inst < issueReadWidth;
|
|
++dis_num_inst)
|
|
{
|
|
inst = insts_to_dispatch.front();
|
|
|
|
if (dispatchStatus[tid] == Unblocking) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
|
|
"buffer\n", tid);
|
|
}
|
|
|
|
// Make sure there's a valid instruction there.
|
|
assert(inst);
|
|
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
|
|
"IQ.\n",
|
|
tid, inst->readPC(), inst->seqNum, inst->threadNumber);
|
|
|
|
// Be sure to mark these instructions as ready so that the
|
|
// commit stage can go ahead and execute them, and mark
|
|
// them as issued so the IQ doesn't reprocess them.
|
|
// -------------
|
|
// @TODO: What happens if the ldstqueue is full?
|
|
// Do we process the other instructions?
|
|
|
|
// Check for squashed instructions.
|
|
if (inst->isSquashed()) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
|
|
"not adding to IQ.\n", tid);
|
|
|
|
++iewDispSquashedInsts;
|
|
|
|
insts_to_dispatch.pop();
|
|
|
|
//Tell Rename That An Instruction has been processed
|
|
if (inst->isLoad() || inst->isStore()) {
|
|
toRename->iewInfo[tid].dispatchedToLSQ++;
|
|
}
|
|
toRename->iewInfo[tid].dispatched++;
|
|
|
|
continue;
|
|
}
|
|
|
|
// Check for full conditions.
|
|
if (instQueue.isFull(tid)) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
|
|
|
|
// Call function to start blocking.
|
|
block(tid);
|
|
|
|
// Set unblock to false. Special case where we are using
|
|
// skidbuffer (unblocking) instructions but then we still
|
|
// get full in the IQ.
|
|
toRename->iewUnblock[tid] = false;
|
|
|
|
dispatchedAllInsts = false;
|
|
|
|
++iewIQFullEvents;
|
|
break;
|
|
} else if (ldstQueue.isFull(tid)) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
|
|
|
|
// Call function to start blocking.
|
|
block(tid);
|
|
|
|
// Set unblock to false. Special case where we are using
|
|
// skidbuffer (unblocking) instructions but then we still
|
|
// get full in the IQ.
|
|
toRename->iewUnblock[tid] = false;
|
|
|
|
dispatchedAllInsts = false;
|
|
|
|
++iewLSQFullEvents;
|
|
break;
|
|
}
|
|
|
|
// Otherwise issue the instruction just fine.
|
|
if (inst->isLoad()) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
|
|
"encountered, adding to LSQ.\n", tid);
|
|
|
|
// Reserve a spot in the load store queue for this
|
|
// memory access.
|
|
ldstQueue.insertLoad(inst);
|
|
|
|
++iewDispLoadInsts;
|
|
|
|
add_to_iq = true;
|
|
|
|
toRename->iewInfo[tid].dispatchedToLSQ++;
|
|
} else if (inst->isStore()) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
|
|
"encountered, adding to LSQ.\n", tid);
|
|
|
|
ldstQueue.insertStore(inst);
|
|
|
|
++iewDispStoreInsts;
|
|
|
|
if (inst->isNonSpeculative()) {
|
|
inst->setCanCommit();
|
|
instQueue.insertNonSpec(inst);
|
|
add_to_iq = false;
|
|
|
|
++iewDispNonSpecInsts;
|
|
} else {
|
|
add_to_iq = true;
|
|
}
|
|
|
|
toRename->iewInfo[tid].dispatchedToLSQ++;
|
|
#if FULL_SYSTEM
|
|
} else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
|
|
inst->setCanCommit();
|
|
instQueue.insertBarrier(inst);
|
|
add_to_iq = false;
|
|
#endif
|
|
} else if (inst->isNonSpeculative()) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
|
|
"encountered, skipping.\n", tid);
|
|
|
|
// Same hack as with stores.
|
|
inst->setCanCommit();
|
|
|
|
// Specifically insert it as nonspeculative.
|
|
instQueue.insertNonSpec(inst);
|
|
|
|
++iewDispNonSpecInsts;
|
|
|
|
add_to_iq = false;
|
|
} else if (inst->isNop()) {
|
|
DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
|
|
"skipping.\n", tid);
|
|
|
|
inst->setIssued();
|
|
inst->setExecuted();
|
|
inst->setCanCommit();
|
|
|
|
instQueue.advanceTail(inst);
|
|
|
|
exe_nop[tid]++;
|
|
|
|
add_to_iq = false;
|
|
} else if (inst->isExecuted()) {
|
|
assert(0 && "Instruction shouldn't be executed.\n");
|
|
DPRINTF(IEW, "Issue: Executed branch encountered, "
|
|
"skipping.\n");
|
|
|
|
inst->setIssued();
|
|
inst->setCanCommit();
|
|
|
|
instQueue.advanceTail(inst);
|
|
|
|
add_to_iq = false;
|
|
} else {
|
|
add_to_iq = true;
|
|
}
|
|
|
|
// If the instruction queue is not full, then add the
|
|
// instruction.
|
|
if (add_to_iq) {
|
|
instQueue.insert(inst);
|
|
}
|
|
|
|
insts_to_dispatch.pop();
|
|
|
|
toRename->iewInfo[tid].dispatched++;
|
|
|
|
++iewDispatchedInsts;
|
|
}
|
|
|
|
if (!insts_to_dispatch.empty()) {
|
|
DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
|
|
block(tid);
|
|
toRename->iewUnblock[tid] = false;
|
|
}
|
|
|
|
if (dispatchStatus[tid] == Idle && dis_num_inst) {
|
|
dispatchStatus[tid] = Running;
|
|
|
|
updatedQueues = true;
|
|
}
|
|
|
|
dis_num_inst = 0;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::printAvailableInsts()
|
|
{
|
|
int inst = 0;
|
|
|
|
cout << "Available Instructions: ";
|
|
|
|
while (fromIssue->insts[inst]) {
|
|
|
|
if (inst%3==0) cout << "\n\t";
|
|
|
|
cout << "PC: " << fromIssue->insts[inst]->readPC()
|
|
<< " TN: " << fromIssue->insts[inst]->threadNumber
|
|
<< " SN: " << fromIssue->insts[inst]->seqNum << " | ";
|
|
|
|
inst++;
|
|
|
|
}
|
|
|
|
cout << "\n";
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::executeInsts()
|
|
{
|
|
//bool fetch_redirect[(*activeThreads).size()];
|
|
wbNumInst = 0;
|
|
wbCycle = 0;
|
|
|
|
list<unsigned>::iterator threads = (*activeThreads).begin();
|
|
|
|
while (threads != (*activeThreads).end()) {
|
|
unsigned tid = *threads++;
|
|
fetchRedirect[tid] = false;
|
|
}
|
|
|
|
#if 0
|
|
printAvailableInsts();
|
|
#endif
|
|
|
|
// Execute/writeback any instructions that are available.
|
|
int inst_num = 0;
|
|
for ( ; inst_num < issueWidth && /* Haven't exceeded issue bandwidth */
|
|
fromIssue->insts[inst_num];
|
|
++inst_num) {
|
|
|
|
DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
|
|
|
|
// Get instruction from issue's queue.
|
|
DynInstPtr inst = fromIssue->insts[inst_num];
|
|
|
|
DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
|
|
inst->readPC(), inst->threadNumber,inst->seqNum);
|
|
|
|
// Check if the instruction is squashed; if so then skip it
|
|
// and don't count it towards the FU usage.
|
|
if (inst->isSquashed()) {
|
|
DPRINTF(IEW, "Execute: Instruction was squashed.\n");
|
|
|
|
// Consider this instruction executed so that commit can go
|
|
// ahead and retire the instruction.
|
|
inst->setExecuted();
|
|
|
|
// Not sure if I should set this here or just let commit try to
|
|
// commit any squashed instructions. I like the latter a bit more.
|
|
inst->setCanCommit();
|
|
|
|
++iewExecSquashedInsts;
|
|
|
|
continue;
|
|
}
|
|
|
|
Fault fault = NoFault;
|
|
|
|
// Execute instruction.
|
|
// Note that if the instruction faults, it will be handled
|
|
// at the commit stage.
|
|
if (inst->isMemRef() &&
|
|
(!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
|
|
DPRINTF(IEW, "Execute: Calculating address for memory "
|
|
"reference.\n");
|
|
|
|
// Tell the LDSTQ to execute this instruction (if it is a load).
|
|
if (inst->isLoad()) {
|
|
// Loads will mark themselves as executed, and their writeback
|
|
// event adds the instruction to the queue to commit
|
|
fault = ldstQueue.executeLoad(inst);
|
|
|
|
// ++iewExecLoadInsts;
|
|
} else if (inst->isStore()) {
|
|
ldstQueue.executeStore(inst);
|
|
|
|
// ++iewExecStoreInsts;
|
|
|
|
// If the store had a fault then it may not have a mem req
|
|
if (inst->req && !(inst->req->flags & LOCKED)) {
|
|
inst->setExecuted();
|
|
|
|
instToCommit(inst);
|
|
}
|
|
// Store conditionals will mark themselves as executed, and
|
|
// their writeback event will add the instruction to the queue
|
|
// to commit.
|
|
} else {
|
|
panic("Unexpected memory type!\n");
|
|
}
|
|
|
|
} else {
|
|
inst->execute();
|
|
|
|
inst->setExecuted();
|
|
|
|
instToCommit(inst);
|
|
}
|
|
|
|
updateExeInstStats(inst);
|
|
|
|
// Check if branch was correct. This check happens after the
|
|
// instruction is added to the queue because even if the branch
|
|
// is mispredicted, the branch instruction itself is still valid.
|
|
// Only handle this if there hasn't already been something that
|
|
// redirects fetch in this group of instructions.
|
|
|
|
// This probably needs to prioritize the redirects if a different
|
|
// scheduler is used. Currently the scheduler schedules the oldest
|
|
// instruction first, so the branch resolution order will be correct.
|
|
unsigned tid = inst->threadNumber;
|
|
|
|
if (!fetchRedirect[tid]) {
|
|
|
|
if (inst->mispredicted()) {
|
|
fetchRedirect[tid] = true;
|
|
|
|
DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
|
|
DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
|
|
inst->nextPC);
|
|
|
|
// If incorrect, then signal the ROB that it must be squashed.
|
|
squashDueToBranch(inst, tid);
|
|
|
|
if (inst->predTaken()) {
|
|
predictedTakenIncorrect++;
|
|
} else {
|
|
predictedNotTakenIncorrect++;
|
|
}
|
|
} else if (ldstQueue.violation(tid)) {
|
|
fetchRedirect[tid] = true;
|
|
|
|
// Get the DynInst that caused the violation. Note that this
|
|
// clears the violation signal.
|
|
DynInstPtr violator;
|
|
violator = ldstQueue.getMemDepViolator(tid);
|
|
|
|
DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: "
|
|
"%#x, inst PC: %#x. Addr is: %#x.\n",
|
|
violator->readPC(), inst->readPC(), inst->physEffAddr);
|
|
|
|
// Tell the instruction queue that a violation has occured.
|
|
instQueue.violation(inst, violator);
|
|
|
|
// Squash.
|
|
squashDueToMemOrder(inst,tid);
|
|
|
|
++memOrderViolationEvents;
|
|
} else if (ldstQueue.loadBlocked(tid) &&
|
|
!ldstQueue.isLoadBlockedHandled(tid)) {
|
|
fetchRedirect[tid] = true;
|
|
|
|
DPRINTF(IEW, "Load operation couldn't execute because the "
|
|
"memory system is blocked. PC: %#x [sn:%lli]\n",
|
|
inst->readPC(), inst->seqNum);
|
|
|
|
squashDueToMemBlocked(inst, tid);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (inst_num) {
|
|
if (exeStatus == Idle) {
|
|
exeStatus = Running;
|
|
}
|
|
|
|
updatedQueues = true;
|
|
|
|
cpu->activityThisCycle();
|
|
}
|
|
|
|
// Need to reset this in case a writeback event needs to write into the
|
|
// iew queue. That way the writeback event will write into the correct
|
|
// spot in the queue.
|
|
wbNumInst = 0;
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::writebackInsts()
|
|
{
|
|
// Loop through the head of the time buffer and wake any dependents.
|
|
// These instructions are about to write back. In the simple model
|
|
// this loop can really happen within the previous loop, but when
|
|
// instructions have actual latencies, this loop must be separate.
|
|
// Also mark scoreboard that this instruction is finally complete.
|
|
// Either have IEW have direct access to rename map, or have this as
|
|
// part of backwards communication.
|
|
for (int inst_num = 0; inst_num < issueWidth &&
|
|
toCommit->insts[inst_num]; inst_num++) {
|
|
DynInstPtr inst = toCommit->insts[inst_num];
|
|
int tid = inst->threadNumber;
|
|
|
|
DPRINTF(IEW, "Sending instructions to commit, PC %#x.\n",
|
|
inst->readPC());
|
|
|
|
iewInstsToCommit[tid]++;
|
|
|
|
// Some instructions will be sent to commit without having
|
|
// executed because they need commit to handle them.
|
|
// E.g. Uncached loads have not actually executed when they
|
|
// are first sent to commit. Instead commit must tell the LSQ
|
|
// when it's ready to execute the uncached load.
|
|
if (!inst->isSquashed() && inst->isExecuted()) {
|
|
int dependents = instQueue.wakeDependents(inst);
|
|
|
|
for (int i = 0; i < inst->numDestRegs(); i++) {
|
|
//mark as Ready
|
|
DPRINTF(IEW,"Setting Destination Register %i\n",
|
|
inst->renamedDestRegIdx(i));
|
|
scoreboard->setReg(inst->renamedDestRegIdx(i));
|
|
}
|
|
|
|
producer_inst[tid]++;
|
|
consumer_inst[tid]+= dependents;
|
|
writeback_count[tid]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Impl>
|
|
void
|
|
DefaultIEW<Impl>::tick()
|
|
{
|
|
// Try to fill up issue queue with as many instructions as bandwidth
|
|
// allows.
|
|
wbNumInst = 0;
|
|
wbCycle = 0;
|
|
|
|
wroteToTimeBuffer = false;
|
|
updatedQueues = false;
|
|
|
|
sortInsts();
|
|
|
|
list<unsigned>::iterator threads = (*activeThreads).begin();
|
|
|
|
// Check stall and squash signals.
|
|
while (threads != (*activeThreads).end()) {
|
|
unsigned tid = *threads++;
|
|
|
|
DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
|
|
|
|
checkSignalsAndUpdate(tid);
|
|
dispatch(tid);
|
|
|
|
}
|
|
|
|
if (exeStatus != Squashing) {
|
|
executeInsts();
|
|
|
|
writebackInsts();
|
|
|
|
// Have the instruction queue try to schedule any ready instructions.
|
|
// (In actuality, this scheduling is for instructions that will
|
|
// be executed next cycle.)
|
|
instQueue.scheduleReadyInsts();
|
|
|
|
// Also should advance its own time buffers if the stage ran.
|
|
// Not the best place for it, but this works (hopefully).
|
|
issueToExecQueue.advance();
|
|
}
|
|
|
|
bool broadcast_free_entries = false;
|
|
|
|
if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
|
|
exeStatus = Idle;
|
|
updateLSQNextCycle = false;
|
|
|
|
broadcast_free_entries = true;
|
|
}
|
|
|
|
// Writeback any stores using any leftover bandwidth.
|
|
ldstQueue.writebackStores();
|
|
|
|
// Free function units marked as being freed this cycle.
|
|
fuPool->processFreeUnits();
|
|
|
|
// Check the committed load/store signals to see if there's a load
|
|
// or store to commit. Also check if it's being told to execute a
|
|
// nonspeculative instruction.
|
|
// This is pretty inefficient...
|
|
|
|
threads = (*activeThreads).begin();
|
|
while (threads != (*activeThreads).end()) {
|
|
unsigned tid = (*threads++);
|
|
|
|
DPRINTF(IEW,"Processing [tid:%i]\n",tid);
|
|
|
|
if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
|
|
!fromCommit->commitInfo[tid].squash &&
|
|
!fromCommit->commitInfo[tid].robSquashing) {
|
|
|
|
ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
|
|
|
|
ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
|
|
|
|
updateLSQNextCycle = true;
|
|
instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
|
|
}
|
|
|
|
if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
|
|
|
|
//DPRINTF(IEW,"NonspecInst from thread %i",tid);
|
|
if (fromCommit->commitInfo[tid].uncached) {
|
|
instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
|
|
} else {
|
|
instQueue.scheduleNonSpec(
|
|
fromCommit->commitInfo[tid].nonSpecSeqNum);
|
|
}
|
|
}
|
|
|
|
if (broadcast_free_entries) {
|
|
toFetch->iewInfo[tid].iqCount =
|
|
instQueue.getCount(tid);
|
|
toFetch->iewInfo[tid].ldstqCount =
|
|
ldstQueue.getCount(tid);
|
|
|
|
toRename->iewInfo[tid].usedIQ = true;
|
|
toRename->iewInfo[tid].freeIQEntries =
|
|
instQueue.numFreeEntries();
|
|
toRename->iewInfo[tid].usedLSQ = true;
|
|
toRename->iewInfo[tid].freeLSQEntries =
|
|
ldstQueue.numFreeEntries(tid);
|
|
|
|
wroteToTimeBuffer = true;
|
|
}
|
|
|
|
DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
|
|
tid, toRename->iewInfo[tid].dispatched);
|
|
|
|
//thread_queue.pop();
|
|
}
|
|
|
|
DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). "
|
|
"LSQ has %i free entries.\n",
|
|
instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
|
|
ldstQueue.numFreeEntries());
|
|
|
|
updateStatus();
|
|
|
|
if (wroteToTimeBuffer) {
|
|
DPRINTF(Activity, "Activity this cycle.\n");
|
|
cpu->activityThisCycle();
|
|
}
|
|
}
|
|
|
|
template <class Impl>
|
|
void
|
|
DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
|
|
{
|
|
int thread_number = inst->threadNumber;
|
|
|
|
//
|
|
// Pick off the software prefetches
|
|
//
|
|
#ifdef TARGET_ALPHA
|
|
if (inst->isDataPrefetch())
|
|
exe_swp[thread_number]++;
|
|
else
|
|
iewExecutedInsts++;
|
|
#else
|
|
iewExecutedInsts[thread_number]++;
|
|
#endif
|
|
|
|
//
|
|
// Control operations
|
|
//
|
|
if (inst->isControl())
|
|
exe_branches[thread_number]++;
|
|
|
|
//
|
|
// Memory operations
|
|
//
|
|
if (inst->isMemRef()) {
|
|
exe_refs[thread_number]++;
|
|
|
|
if (inst->isLoad()) {
|
|
iewExecLoadInsts[thread_number]++;
|
|
}
|
|
}
|
|
}
|