gem5/src/cpu/o3/thread_context_impl.hh
Ali Saidi c6188a2264 fix segfault when peer owner attempts to use functional port
--HG--
extra : convert_revision : 3702b4bd038a59bff823c3b428fdfbaabc9715df
2007-03-13 17:34:52 -04:00

492 lines
12 KiB
C++
Executable file

/*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Korey Sewell
*/
#include "arch/regfile.hh"
#include "cpu/o3/thread_context.hh"
#include "cpu/quiesce_event.hh"
#if FULL_SYSTEM
template <class Impl>
VirtualPort *
O3ThreadContext<Impl>::getVirtPort(ThreadContext *src_tc)
{
if (!src_tc)
return thread->getVirtPort();
VirtualPort *vp;
vp = new VirtualPort("tc-vport", src_tc);
thread->connectToMemFunc(vp);
return vp;
}
template <class Impl>
void
O3ThreadContext<Impl>::dumpFuncProfile()
{
thread->dumpFuncProfile();
}
#endif
template <class Impl>
void
O3ThreadContext<Impl>::takeOverFrom(ThreadContext *old_context)
{
// some things should already be set up
#if FULL_SYSTEM
assert(getSystemPtr() == old_context->getSystemPtr());
#else
assert(getProcessPtr() == old_context->getProcessPtr());
#endif
// copy over functional state
setStatus(old_context->status());
copyArchRegs(old_context);
setCpuId(old_context->readCpuId());
#if !FULL_SYSTEM
thread->funcExeInst = old_context->readFuncExeInst();
#else
EndQuiesceEvent *other_quiesce = old_context->getQuiesceEvent();
if (other_quiesce) {
// Point the quiesce event's TC at this TC so that it wakes up
// the proper CPU.
other_quiesce->tc = this;
}
if (thread->quiesceEvent) {
thread->quiesceEvent->tc = this;
}
// Transfer kernel stats from one CPU to the other.
thread->kernelStats = old_context->getKernelStats();
// storeCondFailures = 0;
cpu->lockFlag = false;
#endif
old_context->setStatus(ThreadContext::Unallocated);
thread->inSyscall = false;
thread->trapPending = false;
}
#if FULL_SYSTEM
template <class Impl>
void
O3ThreadContext<Impl>::delVirtPort(VirtualPort *vp)
{
if (vp != thread->getVirtPort()) {
vp->removeConn();
delete vp;
}
}
#endif
template <class Impl>
void
O3ThreadContext<Impl>::activate(int delay)
{
DPRINTF(O3CPU, "Calling activate on Thread Context %d\n",
getThreadNum());
if (thread->status() == ThreadContext::Active)
return;
#if FULL_SYSTEM
thread->lastActivate = curTick;
#endif
if (thread->status() == ThreadContext::Unallocated) {
cpu->activateWhenReady(thread->readTid());
return;
}
thread->setStatus(ThreadContext::Active);
// status() == Suspended
cpu->activateContext(thread->readTid(), delay);
}
template <class Impl>
void
O3ThreadContext<Impl>::suspend()
{
DPRINTF(O3CPU, "Calling suspend on Thread Context %d\n",
getThreadNum());
if (thread->status() == ThreadContext::Suspended)
return;
#if FULL_SYSTEM
thread->lastActivate = curTick;
thread->lastSuspend = curTick;
#endif
/*
#if FULL_SYSTEM
// Don't change the status from active if there are pending interrupts
if (cpu->check_interrupts()) {
assert(status() == ThreadContext::Active);
return;
}
#endif
*/
thread->setStatus(ThreadContext::Suspended);
cpu->suspendContext(thread->readTid());
}
template <class Impl>
void
O3ThreadContext<Impl>::deallocate(int delay)
{
DPRINTF(O3CPU, "Calling deallocate on Thread Context %d delay %d\n",
getThreadNum(), delay);
if (thread->status() == ThreadContext::Unallocated)
return;
thread->setStatus(ThreadContext::Unallocated);
cpu->deallocateContext(thread->readTid(), true, delay);
}
template <class Impl>
void
O3ThreadContext<Impl>::halt()
{
DPRINTF(O3CPU, "Calling halt on Thread Context %d\n",
getThreadNum());
if (thread->status() == ThreadContext::Halted)
return;
thread->setStatus(ThreadContext::Halted);
cpu->haltContext(thread->readTid());
}
template <class Impl>
void
O3ThreadContext<Impl>::regStats(const std::string &name)
{
#if FULL_SYSTEM
thread->kernelStats = new TheISA::Kernel::Statistics(cpu->system);
thread->kernelStats->regStats(name + ".kern");
#endif
}
template <class Impl>
void
O3ThreadContext<Impl>::serialize(std::ostream &os)
{
#if FULL_SYSTEM
if (thread->kernelStats)
thread->kernelStats->serialize(os);
#endif
}
template <class Impl>
void
O3ThreadContext<Impl>::unserialize(Checkpoint *cp, const std::string &section)
{
#if FULL_SYSTEM
if (thread->kernelStats)
thread->kernelStats->unserialize(cp, section);
#endif
}
#if FULL_SYSTEM
template <class Impl>
Tick
O3ThreadContext<Impl>::readLastActivate()
{
return thread->lastActivate;
}
template <class Impl>
Tick
O3ThreadContext<Impl>::readLastSuspend()
{
return thread->lastSuspend;
}
template <class Impl>
void
O3ThreadContext<Impl>::profileClear()
{
thread->profileClear();
}
template <class Impl>
void
O3ThreadContext<Impl>::profileSample()
{
thread->profileSample();
}
#endif
template <class Impl>
TheISA::MachInst
O3ThreadContext<Impl>:: getInst()
{
return thread->getInst();
}
template <class Impl>
void
O3ThreadContext<Impl>::copyArchRegs(ThreadContext *tc)
{
// This function will mess things up unless the ROB is empty and
// there are no instructions in the pipeline.
unsigned tid = thread->readTid();
PhysRegIndex renamed_reg;
// First loop through the integer registers.
for (int i = 0; i < TheISA::NumIntRegs; ++i) {
renamed_reg = cpu->renameMap[tid].lookup(i);
DPRINTF(O3CPU, "Copying over register %i, had data %lli, "
"now has data %lli.\n",
renamed_reg, cpu->readIntReg(renamed_reg),
tc->readIntReg(i));
cpu->setIntReg(renamed_reg, tc->readIntReg(i));
}
// Then loop through the floating point registers.
for (int i = 0; i < TheISA::NumFloatRegs; ++i) {
renamed_reg = cpu->renameMap[tid].lookup(i + TheISA::FP_Base_DepTag);
cpu->setFloatRegBits(renamed_reg,
tc->readFloatRegBits(i));
}
// Copy the misc regs.
TheISA::copyMiscRegs(tc, this);
// Then finally set the PC and the next PC.
cpu->setPC(tc->readPC(), tid);
cpu->setNextPC(tc->readNextPC(), tid);
#if !FULL_SYSTEM
this->thread->funcExeInst = tc->readFuncExeInst();
#endif
}
template <class Impl>
void
O3ThreadContext<Impl>::clearArchRegs()
{}
template <class Impl>
uint64_t
O3ThreadContext<Impl>::readIntReg(int reg_idx)
{
reg_idx = TheISA::flattenIntIndex(this, reg_idx);
return cpu->readArchIntReg(reg_idx, thread->readTid());
}
template <class Impl>
TheISA::FloatReg
O3ThreadContext<Impl>::readFloatReg(int reg_idx, int width)
{
switch(width) {
case 32:
return cpu->readArchFloatRegSingle(reg_idx, thread->readTid());
case 64:
return cpu->readArchFloatRegDouble(reg_idx, thread->readTid());
default:
panic("Unsupported width!");
return 0;
}
}
template <class Impl>
TheISA::FloatReg
O3ThreadContext<Impl>::readFloatReg(int reg_idx)
{
return cpu->readArchFloatRegSingle(reg_idx, thread->readTid());
}
template <class Impl>
TheISA::FloatRegBits
O3ThreadContext<Impl>::readFloatRegBits(int reg_idx, int width)
{
DPRINTF(Fault, "Reading floatint register through the TC!\n");
return cpu->readArchFloatRegInt(reg_idx, thread->readTid());
}
template <class Impl>
TheISA::FloatRegBits
O3ThreadContext<Impl>::readFloatRegBits(int reg_idx)
{
return cpu->readArchFloatRegInt(reg_idx, thread->readTid());
}
template <class Impl>
void
O3ThreadContext<Impl>::setIntReg(int reg_idx, uint64_t val)
{
reg_idx = TheISA::flattenIntIndex(this, reg_idx);
cpu->setArchIntReg(reg_idx, val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setFloatReg(int reg_idx, FloatReg val, int width)
{
switch(width) {
case 32:
cpu->setArchFloatRegSingle(reg_idx, val, thread->readTid());
break;
case 64:
cpu->setArchFloatRegDouble(reg_idx, val, thread->readTid());
break;
}
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setFloatReg(int reg_idx, FloatReg val)
{
cpu->setArchFloatRegSingle(reg_idx, val, thread->readTid());
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setFloatRegBits(int reg_idx, FloatRegBits val,
int width)
{
DPRINTF(Fault, "Setting floatint register through the TC!\n");
cpu->setArchFloatRegInt(reg_idx, val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setFloatRegBits(int reg_idx, FloatRegBits val)
{
cpu->setArchFloatRegInt(reg_idx, val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setPC(uint64_t val)
{
cpu->setPC(val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setNextPC(uint64_t val)
{
cpu->setNextPC(val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setMiscRegNoEffect(int misc_reg, const MiscReg &val)
{
cpu->setMiscRegNoEffect(misc_reg, val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
template <class Impl>
void
O3ThreadContext<Impl>::setMiscReg(int misc_reg,
const MiscReg &val)
{
cpu->setMiscReg(misc_reg, val, thread->readTid());
// Squash if we're not already in a state update mode.
if (!thread->trapPending && !thread->inSyscall) {
cpu->squashFromTC(thread->readTid());
}
}
#if !FULL_SYSTEM
template <class Impl>
TheISA::IntReg
O3ThreadContext<Impl>::getSyscallArg(int i)
{
return cpu->getSyscallArg(i, thread->readTid());
}
template <class Impl>
void
O3ThreadContext<Impl>::setSyscallArg(int i, IntReg val)
{
cpu->setSyscallArg(i, val, thread->readTid());
}
template <class Impl>
void
O3ThreadContext<Impl>::setSyscallReturn(SyscallReturn return_value)
{
cpu->setSyscallReturn(return_value, thread->readTid());
}
#endif // FULL_SYSTEM