gem5/src/arch/riscv/process.cc

239 lines
8.5 KiB
C++

/*
* Copyright (c) 2004-2005 The Regents of The University of Michigan
* Copyright (c) 2016 The University of Virginia
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
* Ali Saidi
* Korey Sewell
* Alec Roelke
*/
#include "arch/riscv/process.hh"
#include <vector>
#include "arch/riscv/isa_traits.hh"
#include "base/loader/elf_object.hh"
#include "base/loader/object_file.hh"
#include "base/misc.hh"
#include "cpu/thread_context.hh"
#include "debug/Loader.hh"
#include "mem/page_table.hh"
#include "sim/process.hh"
#include "sim/process_impl.hh"
#include "sim/system.hh"
using namespace std;
using namespace RiscvISA;
RiscvLiveProcess::RiscvLiveProcess(LiveProcessParams * params,
ObjectFile *objFile) : LiveProcess(params, objFile)
{
// Set up stack. On RISC-V, stack starts at the top of kuseg
// user address space. RISC-V stack grows down from here
stack_base = 0x7FFFFFFF;
// Set pointer for next thread stack. Reserve 8M for main stack.
next_thread_stack_base = stack_base - (8 * 1024 * 1024);
// Set up break point (Top of Heap)
brk_point = objFile->bssBase() + objFile->bssSize();
// Set up region for mmaps. Start it 1GB above the top of the heap.
mmap_end = brk_point + 0x40000000L;
}
void
RiscvLiveProcess::initState()
{
LiveProcess::initState();
argsInit<uint64_t>(PageBytes);
}
template<class IntType> void
RiscvLiveProcess::argsInit(int pageSize)
{
updateBias();
// load object file into target memory
objFile->loadSections(initVirtMem);
typedef AuxVector<IntType> auxv_t;
vector<auxv_t> auxv;
ElfObject * elfObject = dynamic_cast<ElfObject *>(objFile);
if (elfObject) {
// Set the system page size
auxv.push_back(auxv_t(M5_AT_PAGESZ, RiscvISA::PageBytes));
// Set the frequency at which time() increments
auxv.push_back(auxv_t(M5_AT_CLKTCK, 100));
// For statically linked executables, this is the virtual
// address of the program header tables if they appear in the
// executable image.
auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable()));
DPRINTF(Loader, "auxv at PHDR %08p\n",
elfObject->programHeaderTable());
// This is the size of a program header entry from the elf file.
auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize()));
// This is the number of program headers from the original elf file.
auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount()));
auxv.push_back(auxv_t(M5_AT_BASE, getBias()));
//The entry point to the program
auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint()));
//Different user and group IDs
auxv.push_back(auxv_t(M5_AT_UID, uid()));
auxv.push_back(auxv_t(M5_AT_EUID, euid()));
auxv.push_back(auxv_t(M5_AT_GID, gid()));
auxv.push_back(auxv_t(M5_AT_EGID, egid()));
}
const IntType zero = 0;
IntType argc = htog((IntType)argv.size());
int argv_array_size = sizeof(Addr) * argv.size();
int arg_data_size = 0;
for (string arg: argv)
arg_data_size += arg.size() + 1;
int envp_array_size = sizeof(Addr) * envp.size();
int env_data_size = 0;
for (string env: envp)
env_data_size += env.size() + 1;
int auxv_array_size = 2 * sizeof(IntType)*auxv.size();
stack_size = sizeof(IntType) + argv_array_size + 2 * sizeof(Addr) +
arg_data_size + 2 * sizeof(Addr);
if (!envp.empty()) {
stack_size += 2 * sizeof(Addr) + envp_array_size + 2 * sizeof(Addr) +
env_data_size;
}
if (!auxv.empty())
stack_size += 2 * sizeof(Addr) + auxv_array_size;
stack_min = roundDown(stack_base - stack_size, pageSize);
allocateMem(stack_min, roundUp(stack_size, pageSize));
Addr argv_array_base = stack_min + sizeof(IntType);
Addr arg_data_base = argv_array_base + argv_array_size + 2 * sizeof(Addr);
Addr envp_array_base = arg_data_base + arg_data_size;
if (!envp.empty())
envp_array_base += 2 * sizeof(Addr);
Addr env_data_base = envp_array_base + envp_array_size;
if (!envp.empty())
env_data_base += 2 * sizeof(Addr);
vector<Addr> arg_pointers;
if (!argv.empty()) {
arg_pointers.push_back(arg_data_base);
for (int i = 0; i < argv.size() - 1; i++) {
arg_pointers.push_back(arg_pointers[i] + argv[i].size() + 1);
}
}
vector<Addr> env_pointers;
if (!envp.empty()) {
env_pointers.push_back(env_data_base);
for (int i = 0; i < envp.size() - 1; i++) {
env_pointers.push_back(env_pointers[i] + envp[i].size() + 1);
}
}
Addr sp = stack_min;
initVirtMem.writeBlob(sp, (uint8_t *)&argc, sizeof(IntType));
sp += sizeof(IntType);
for (Addr arg_pointer: arg_pointers) {
initVirtMem.writeBlob(sp, (uint8_t *)&arg_pointer, sizeof(Addr));
sp += sizeof(Addr);
}
for (int i = 0; i < 2; i++) {
initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
sp += sizeof(Addr);
}
for (int i = 0; i < argv.size(); i++) {
initVirtMem.writeString(sp, argv[i].c_str());
sp += argv[i].size() + 1;
}
if (!envp.empty()) {
for (int i = 0; i < 2; i++) {
initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
sp += sizeof(Addr);
}
}
for (Addr env_pointer: env_pointers)
initVirtMem.writeBlob(sp, (uint8_t *)&env_pointer, sizeof(Addr));
if (!envp.empty()) {
for (int i = 0; i < 2; i++) {
initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
sp += sizeof(Addr);
}
}
for (int i = 0; i < envp.size(); i++) {
initVirtMem.writeString(sp, envp[i].c_str());
sp += envp[i].size() + 1;
}
if (!auxv.empty()) {
for (int i = 0; i < 2; i++) {
initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
sp += sizeof(Addr);
}
}
for (auxv_t aux: auxv) {
initVirtMem.writeBlob(sp, (uint8_t *)&aux.a_type, sizeof(IntType));
initVirtMem.writeBlob(sp + sizeof(IntType), (uint8_t *)&aux.a_val,
sizeof(IntType));
sp += 2 * sizeof(IntType);
}
for (int i = 0; i < 2; i++) {
initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr));
sp += sizeof(Addr);
}
ThreadContext *tc = system->getThreadContext(contextIds[0]);
tc->setIntReg(StackPointerReg, stack_min);
tc->pcState(getStartPC());
}
RiscvISA::IntReg
RiscvLiveProcess::getSyscallArg(ThreadContext *tc, int &i)
{
return tc->readIntReg(SyscallArgumentRegs[i++]);
}
void
RiscvLiveProcess::setSyscallArg(ThreadContext *tc, int i, RiscvISA::IntReg val)
{
tc->setIntReg(SyscallArgumentRegs[i], val);
}
void
RiscvLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret)
{
if (sysret.successful()) {
// no error
tc->setIntReg(SyscallPseudoReturnReg, sysret.returnValue());
} else {
// got an error, return details
tc->setIntReg(SyscallPseudoReturnReg, sysret.errnoValue());
}
}