/* * Copyright (c) 2004-2005 The Regents of The University of Michigan * Copyright (c) 2016 The University of Virginia * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Gabe Black * Ali Saidi * Korey Sewell * Alec Roelke */ #include "arch/riscv/process.hh" #include #include "arch/riscv/isa_traits.hh" #include "base/loader/elf_object.hh" #include "base/loader/object_file.hh" #include "base/misc.hh" #include "cpu/thread_context.hh" #include "debug/Loader.hh" #include "mem/page_table.hh" #include "sim/process.hh" #include "sim/process_impl.hh" #include "sim/system.hh" using namespace std; using namespace RiscvISA; RiscvLiveProcess::RiscvLiveProcess(LiveProcessParams * params, ObjectFile *objFile) : LiveProcess(params, objFile) { // Set up stack. On RISC-V, stack starts at the top of kuseg // user address space. RISC-V stack grows down from here stack_base = 0x7FFFFFFF; // Set pointer for next thread stack. Reserve 8M for main stack. next_thread_stack_base = stack_base - (8 * 1024 * 1024); // Set up break point (Top of Heap) brk_point = objFile->bssBase() + objFile->bssSize(); // Set up region for mmaps. Start it 1GB above the top of the heap. mmap_end = brk_point + 0x40000000L; } void RiscvLiveProcess::initState() { LiveProcess::initState(); argsInit(PageBytes); } template void RiscvLiveProcess::argsInit(int pageSize) { updateBias(); // load object file into target memory objFile->loadSections(initVirtMem); typedef AuxVector auxv_t; vector auxv; ElfObject * elfObject = dynamic_cast(objFile); if (elfObject) { // Set the system page size auxv.push_back(auxv_t(M5_AT_PAGESZ, RiscvISA::PageBytes)); // Set the frequency at which time() increments auxv.push_back(auxv_t(M5_AT_CLKTCK, 100)); // For statically linked executables, this is the virtual // address of the program header tables if they appear in the // executable image. auxv.push_back(auxv_t(M5_AT_PHDR, elfObject->programHeaderTable())); DPRINTF(Loader, "auxv at PHDR %08p\n", elfObject->programHeaderTable()); // This is the size of a program header entry from the elf file. auxv.push_back(auxv_t(M5_AT_PHENT, elfObject->programHeaderSize())); // This is the number of program headers from the original elf file. auxv.push_back(auxv_t(M5_AT_PHNUM, elfObject->programHeaderCount())); auxv.push_back(auxv_t(M5_AT_BASE, getBias())); //The entry point to the program auxv.push_back(auxv_t(M5_AT_ENTRY, objFile->entryPoint())); //Different user and group IDs auxv.push_back(auxv_t(M5_AT_UID, uid())); auxv.push_back(auxv_t(M5_AT_EUID, euid())); auxv.push_back(auxv_t(M5_AT_GID, gid())); auxv.push_back(auxv_t(M5_AT_EGID, egid())); } const IntType zero = 0; IntType argc = htog((IntType)argv.size()); int argv_array_size = sizeof(Addr) * argv.size(); int arg_data_size = 0; for (string arg: argv) arg_data_size += arg.size() + 1; int envp_array_size = sizeof(Addr) * envp.size(); int env_data_size = 0; for (string env: envp) env_data_size += env.size() + 1; int auxv_array_size = 2 * sizeof(IntType)*auxv.size(); stack_size = sizeof(IntType) + argv_array_size + 2 * sizeof(Addr) + arg_data_size + 2 * sizeof(Addr); if (!envp.empty()) { stack_size += 2 * sizeof(Addr) + envp_array_size + 2 * sizeof(Addr) + env_data_size; } if (!auxv.empty()) stack_size += 2 * sizeof(Addr) + auxv_array_size; stack_min = roundDown(stack_base - stack_size, pageSize); allocateMem(stack_min, roundUp(stack_size, pageSize)); Addr argv_array_base = stack_min + sizeof(IntType); Addr arg_data_base = argv_array_base + argv_array_size + 2 * sizeof(Addr); Addr envp_array_base = arg_data_base + arg_data_size; if (!envp.empty()) envp_array_base += 2 * sizeof(Addr); Addr env_data_base = envp_array_base + envp_array_size; if (!envp.empty()) env_data_base += 2 * sizeof(Addr); vector arg_pointers; if (!argv.empty()) { arg_pointers.push_back(arg_data_base); for (int i = 0; i < argv.size() - 1; i++) { arg_pointers.push_back(arg_pointers[i] + argv[i].size() + 1); } } vector env_pointers; if (!envp.empty()) { env_pointers.push_back(env_data_base); for (int i = 0; i < envp.size() - 1; i++) { env_pointers.push_back(env_pointers[i] + envp[i].size() + 1); } } Addr sp = stack_min; initVirtMem.writeBlob(sp, (uint8_t *)&argc, sizeof(IntType)); sp += sizeof(IntType); for (Addr arg_pointer: arg_pointers) { initVirtMem.writeBlob(sp, (uint8_t *)&arg_pointer, sizeof(Addr)); sp += sizeof(Addr); } for (int i = 0; i < 2; i++) { initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr)); sp += sizeof(Addr); } for (int i = 0; i < argv.size(); i++) { initVirtMem.writeString(sp, argv[i].c_str()); sp += argv[i].size() + 1; } if (!envp.empty()) { for (int i = 0; i < 2; i++) { initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr)); sp += sizeof(Addr); } } for (Addr env_pointer: env_pointers) initVirtMem.writeBlob(sp, (uint8_t *)&env_pointer, sizeof(Addr)); if (!envp.empty()) { for (int i = 0; i < 2; i++) { initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr)); sp += sizeof(Addr); } } for (int i = 0; i < envp.size(); i++) { initVirtMem.writeString(sp, envp[i].c_str()); sp += envp[i].size() + 1; } if (!auxv.empty()) { for (int i = 0; i < 2; i++) { initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr)); sp += sizeof(Addr); } } for (auxv_t aux: auxv) { initVirtMem.writeBlob(sp, (uint8_t *)&aux.a_type, sizeof(IntType)); initVirtMem.writeBlob(sp + sizeof(IntType), (uint8_t *)&aux.a_val, sizeof(IntType)); sp += 2 * sizeof(IntType); } for (int i = 0; i < 2; i++) { initVirtMem.writeBlob(sp, (uint8_t *)&zero, sizeof(Addr)); sp += sizeof(Addr); } ThreadContext *tc = system->getThreadContext(contextIds[0]); tc->setIntReg(StackPointerReg, stack_min); tc->pcState(getStartPC()); } RiscvISA::IntReg RiscvLiveProcess::getSyscallArg(ThreadContext *tc, int &i) { return tc->readIntReg(SyscallArgumentRegs[i++]); } void RiscvLiveProcess::setSyscallArg(ThreadContext *tc, int i, RiscvISA::IntReg val) { tc->setIntReg(SyscallArgumentRegs[i], val); } void RiscvLiveProcess::setSyscallReturn(ThreadContext *tc, SyscallReturn sysret) { if (sysret.successful()) { // no error tc->setIntReg(SyscallPseudoReturnReg, sysret.returnValue()); } else { // got an error, return details tc->setIntReg(SyscallPseudoReturnReg, sysret.errnoValue()); } }