gem5/src/mem/protocol/MOESI_hammer-dir.sm
Brad Beckmann 143d8ea698 ruby: removed last level cache support
Removed the last level cache support and MOESI_hammer's dependency on it.
Replaces the LLC support with the more generic MachineType count.
2010-01-29 20:29:34 -08:00

914 lines
30 KiB
Plaintext

/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
* Copyright (c) 2009 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* AMD's contributions to the MOESI hammer protocol do not constitute an
* endorsement of its similarity to any AMD products.
*
* Authors: Milo Martin
* Brad Beckmann
*/
machine(Directory, "AMD Hammer-like protocol")
: DirectoryMemory * directory,
MemoryControl * memBuffer,
int memory_controller_latency = 12
{
MessageBuffer forwardFromDir, network="To", virtual_network="2", ordered="false";
MessageBuffer responseFromDir, network="To", virtual_network="1", ordered="false";
//
// For a finite buffered network, note that the DMA response network only
// works at this relatively higher numbered (lower priority) virtual network
// because the trigger queue decouples cache responses from DMA responses.
//
MessageBuffer dmaResponseFromDir, network="To", virtual_network="4", ordered="true";
MessageBuffer unblockToDir, network="From", virtual_network="0", ordered="false";
MessageBuffer responseToDir, network="From", virtual_network="1", ordered="false";
MessageBuffer requestToDir, network="From", virtual_network="3", ordered="false";
MessageBuffer dmaRequestToDir, network="From", virtual_network="5", ordered="true";
// STATES
enumeration(State, desc="Directory states", default="Directory_State_E") {
// Base states
NO, desc="Not Owner";
O, desc="Owner";
E, desc="Exclusive Owner (we can provide the data in exclusive)";
NO_B, "NO^B", desc="Not Owner, Blocked";
O_B, "O^B", desc="Owner, Blocked";
NO_B_W, desc="Not Owner, Blocked, waiting for Dram";
O_B_W, desc="Owner, Blocked, waiting for Dram";
NO_W, desc="Not Owner, waiting for Dram";
O_W, desc="Owner, waiting for Dram";
NO_DW_B_W, desc="Not Owner, Dma Write waiting for Dram and cache responses";
NO_DR_B_W, desc="Not Owner, Dma Read waiting for Dram and cache responses";
NO_DR_B_D, desc="Not Owner, Dma Read waiting for cache responses including dirty data";
NO_DR_B, desc="Not Owner, Dma Read waiting for cache responses";
NO_DW_W, desc="Not Owner, Dma Write waiting for Dram";
O_DR_B_W, desc="Owner, Dma Read waiting for Dram and cache responses";
O_DR_B, desc="Owner, Dma Read waiting for cache responses";
WB, desc="Blocked on a writeback";
WB_O_W, desc="Blocked on memory write, will go to O";
WB_E_W, desc="Blocked on memory write, will go to E";
}
// Events
enumeration(Event, desc="Directory events") {
GETX, desc="A GETX arrives";
GETS, desc="A GETS arrives";
PUT, desc="A PUT arrives";
Unblock, desc="An unblock message arrives";
Writeback_Clean, desc="The final part of a PutX (no data)";
Writeback_Dirty, desc="The final part of a PutX (data)";
Writeback_Exclusive_Clean, desc="The final part of a PutX (no data, exclusive)";
Writeback_Exclusive_Dirty, desc="The final part of a PutX (data, exclusive)";
// DMA requests
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
// Memory Controller
Memory_Data, desc="Fetched data from memory arrives";
Memory_Ack, desc="Writeback Ack from memory arrives";
// Cache responses required to handle DMA
Ack, desc="Received an ack message";
Shared_Ack, desc="Received an ack message, responder has a shared copy";
Shared_Data, desc="Received a data message, responder has a shared copy";
Exclusive_Data, desc="Received a data message, responder had an exclusive copy, they gave it to us";
// Triggers
All_acks_and_data, desc="Received all required data and message acks";
All_acks_and_data_no_sharers, desc="Received all acks and no other processor has a shared copy";
}
// TYPES
// DirectoryEntry
structure(Entry, desc="...", interface="AbstractEntry") {
State DirectoryState, desc="Directory state";
DataBlock DataBlk, desc="data for the block";
}
// TBE entries for DMA requests
structure(TBE, desc="TBE entries for outstanding DMA requests") {
Address PhysicalAddress, desc="physical address";
State TBEState, desc="Transient State";
CoherenceResponseType ResponseType, desc="The type for the subsequent response message";
DataBlock DmaDataBlk, desc="DMA Data to be written. Partial blocks need to merged with system memory";
DataBlock DataBlk, desc="The current view of system memory";
int Len, desc="...";
MachineID DmaRequestor, desc="DMA requestor";
int NumPendingMsgs, desc="Number of pending acks/messages";
bool CacheDirty, desc="Indicates whether a cache has responded with dirty data";
bool Sharers, desc="Indicates whether a cache has indicated it is currently a sharer";
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
// ** OBJECTS **
TBETable TBEs, template_hack="<Directory_TBE>";
Entry getDirectoryEntry(Address addr), return_by_ref="yes" {
return static_cast(Entry, directory[addr]);
}
State getState(Address addr) {
if (TBEs.isPresent(addr)) {
return TBEs[addr].TBEState;
} else {
return getDirectoryEntry(addr).DirectoryState;
}
}
void setState(Address addr, State state) {
if (TBEs.isPresent(addr)) {
TBEs[addr].TBEState := state;
}
getDirectoryEntry(addr).DirectoryState := state;
}
MessageBuffer triggerQueue, ordered="true";
// ** OUT_PORTS **
out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
out_port(responseNetwork_out, ResponseMsg, responseFromDir);
out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
//
// Memory buffer for memory controller to DIMM communication
//
out_port(memQueue_out, MemoryMsg, memBuffer);
// ** IN_PORTS **
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks_and_data, in_msg.Address);
} else if (in_msg.Type == TriggerType:ALL_ACKS_NO_SHARERS) {
trigger(Event:All_acks_and_data_no_sharers, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
in_port(unblockNetwork_in, ResponseMsg, unblockToDir) {
if (unblockNetwork_in.isReady()) {
peek(unblockNetwork_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:UNBLOCK) {
trigger(Event:Unblock, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:WB_CLEAN) {
trigger(Event:Writeback_Clean, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:WB_DIRTY) {
trigger(Event:Writeback_Dirty, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_CLEAN) {
trigger(Event:Writeback_Exclusive_Clean, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:WB_EXCLUSIVE_DIRTY) {
trigger(Event:Writeback_Exclusive_Dirty, in_msg.Address);
} else {
error("Invalid message");
}
}
}
}
// Response Network
in_port(responseToDir_in, ResponseMsg, responseToDir) {
if (responseToDir_in.isReady()) {
peek(responseToDir_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:ACK_SHARED) {
trigger(Event:Shared_Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_SHARED) {
trigger(Event:Shared_Data, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE) {
trigger(Event:Exclusive_Data, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
if (dmaRequestQueue_in.isReady()) {
peek(dmaRequestQueue_in, DMARequestMsg) {
if (in_msg.Type == DMARequestType:READ) {
trigger(Event:DMA_READ, in_msg.LineAddress);
} else if (in_msg.Type == DMARequestType:WRITE) {
trigger(Event:DMA_WRITE, in_msg.LineAddress);
} else {
error("Invalid message");
}
}
}
}
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
peek(requestQueue_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:GETS, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:GETX) {
trigger(Event:GETX, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:PUT) {
trigger(Event:PUT, in_msg.Address);
} else {
error("Invalid message");
}
}
}
}
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, memBuffer) {
if (memQueue_in.isReady()) {
peek(memQueue_in, MemoryMsg) {
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.Address);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:Memory_Ack, in_msg.Address);
} else {
DEBUG_EXPR(in_msg.Type);
error("Invalid message");
}
}
}
}
// Actions
action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_NACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
peek(requestQueue_in, RequestMsg) {
TBEs.allocate(address);
TBEs[address].PhysicalAddress := address;
TBEs[address].ResponseType := CoherenceResponseType:NULL;
}
}
action(vd_allocateDmaRequestInTBE, "vd", desc="Record Data in TBE") {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBEs.allocate(address);
TBEs[address].DmaDataBlk := in_msg.DataBlk;
TBEs[address].PhysicalAddress := in_msg.PhysicalAddress;
TBEs[address].Len := in_msg.Len;
TBEs[address].DmaRequestor := in_msg.Requestor;
TBEs[address].ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
//
// One ack for each last-level cache
//
TBEs[address].NumPendingMsgs := machineCount(MachineType:L1Cache);
//
// Assume initially that the caches store a clean copy and that memory
// will provide the data
//
TBEs[address].CacheDirty := false;
}
}
action(w_deallocateTBE, "w", desc="Deallocate TBE") {
TBEs.deallocate(address);
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToDir_in, ResponseMsg) {
assert(in_msg.Acks > 0);
DEBUG_EXPR(TBEs[address].NumPendingMsgs);
//
// Note that cache data responses will have an ack count of 2. However,
// directory DMA requests must wait for acks from all LLC caches, so
// only decrement by 1.
//
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - 1;
DEBUG_EXPR(TBEs[address].NumPendingMsgs);
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToDir_in.dequeue();
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
if (TBEs[address].NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.Address := address;
if (TBEs[address].Sharers) {
out_msg.Type := TriggerType:ALL_ACKS;
} else {
out_msg.Type := TriggerType:ALL_ACKS_NO_SHARERS;
}
}
}
}
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := TBEs[address].ResponseType;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
out_msg.Dirty := false; // By definition, the block is now clean
out_msg.Acks := 1;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(dr_sendDmaData, "dr", desc="Send Data to DMA controller from memory") {
peek(memQueue_in, MemoryMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
//
// we send the entire data block and rely on the dma controller to
// split it up if need be
//
out_msg.DataBlk := in_msg.DataBlk;
out_msg.Destination.add(TBEs[address].DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(dt_sendDmaDataFromTbe, "dt", desc="Send Data to DMA controller from tbe") {
peek(triggerQueue_in, TriggerMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
//
// we send the entire data block and rely on the dma controller to
// split it up if need be
//
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.Destination.add(TBEs[address].DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(da_sendDmaAck, "da", desc="Send Ack to DMA controller") {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:ACK;
out_msg.Destination.add(TBEs[address].DmaRequestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(rx_recordExclusiveInTBE, "rx", desc="Record Exclusive in TBE") {
peek(requestQueue_in, RequestMsg) {
TBEs[address].ResponseType := CoherenceResponseType:DATA_EXCLUSIVE;
}
}
action(r_recordDataInTBE, "rt", desc="Record Data in TBE") {
peek(requestQueue_in, RequestMsg) {
TBEs[address].ResponseType := CoherenceResponseType:DATA;
}
}
action(r_setSharerBit, "r", desc="We saw other sharers") {
TBEs[address].Sharers := true;
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
DEBUG_EXPR(out_msg);
}
}
}
action(qd_queueMemoryRequestFromDmaRead, "qd", desc="Queue off-chip fetch request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
DEBUG_EXPR(out_msg);
}
}
}
action(f_forwardRequest, "f", desc="Forward requests") {
if (machineCount(MachineType:L1Cache) > 1) {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
out_msg.Address := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.broadcast(MachineType:L1Cache); // Send to all L1 caches
out_msg.Destination.remove(in_msg.Requestor); // Don't include the original requestor
out_msg.MessageSize := MessageSizeType:Forwarded_Control;
}
}
}
}
action(f_forwardWriteFromDma, "fw", desc="Forward requests") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
//
// Send to all L1 caches, since the requestor is the memory controller
// itself
//
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Forwarded_Control;
}
}
}
action(f_forwardReadFromDma, "fr", desc="Forward requests") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=memory_controller_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
//
// Send to all L1 caches, since the requestor is the memory controller
// itself
//
out_msg.Requestor := machineID;
out_msg.Destination.broadcast(MachineType:L1Cache);
out_msg.MessageSize := MessageSizeType:Forwarded_Control;
}
}
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
}
action(j_popIncomingUnblockQueue, "j", desc="Pop incoming unblock queue") {
unblockNetwork_in.dequeue();
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
}
action(g_popTriggerQueue, "g", desc="Pop trigger queue") {
triggerQueue_in.dequeue();
}
action(p_popDmaRequestQueue, "pd", desc="pop dma request queue") {
dmaRequestQueue_in.dequeue();
}
action(y_recycleDmaRequestQueue, "y", desc="recycle dma request queue") {
dmaRequestQueue_in.recycle();
}
action(r_recordMemoryData, "rd", desc="record data from memory to TBE") {
peek(memQueue_in, MemoryMsg) {
if (TBEs[address].CacheDirty == false) {
TBEs[address].DataBlk := in_msg.DataBlk;
}
}
}
action(r_recordCacheData, "rc", desc="record data from cache response to TBE") {
peek(responseToDir_in, ResponseMsg) {
TBEs[address].CacheDirty := true;
TBEs[address].DataBlk := in_msg.DataBlk;
}
}
action(l_writeDataToMemory, "l", desc="Write PUTX/PUTO data to memory") {
peek(unblockNetwork_in, ResponseMsg) {
assert(in_msg.Dirty);
assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
getDirectoryEntry(address).DataBlk := in_msg.DataBlk;
DEBUG_EXPR(in_msg.Address);
DEBUG_EXPR(in_msg.DataBlk);
}
}
action(dwt_writeDmaDataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
getDirectoryEntry(address).DataBlk := TBEs[address].DataBlk;
getDirectoryEntry(address).DataBlk.copyPartial(TBEs[address].DmaDataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len);
}
action(a_assertCacheData, "ac", desc="Assert that a cache provided the data") {
assert(TBEs[address].CacheDirty);
}
action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
peek(unblockNetwork_in, ResponseMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
DEBUG_EXPR(out_msg);
}
}
}
action(ld_queueMemoryDmaWrite, "ld", desc="Write DMA data to memory") {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
// first, initialize the data blk to the current version of system memory
out_msg.DataBlk := TBEs[address].DataBlk;
// then add the dma write data
out_msg.DataBlk.copyPartial(TBEs[address].DmaDataBlk, addressOffset(TBEs[address].PhysicalAddress), TBEs[address].Len);
DEBUG_EXPR(out_msg);
}
}
action(ll_checkIncomingWriteback, "\l", desc="Check PUTX/PUTO response message") {
peek(unblockNetwork_in, ResponseMsg) {
assert(in_msg.Dirty == false);
assert(in_msg.MessageSize == MessageSizeType:Writeback_Control);
// NOTE: The following check would not be valid in a real
// implementation. We include the data in the "dataless"
// message so we can assert the clean data matches the datablock
// in memory
assert(getDirectoryEntry(address).DataBlk == in_msg.DataBlk);
}
}
action(zz_recycleRequest, "\z", desc="Recycle the request queue") {
requestQueue_in.recycle();
}
// TRANSITIONS
// Transitions out of E state
transition(E, GETX, NO_B_W) {
v_allocateTBE;
rx_recordExclusiveInTBE;
qf_queueMemoryFetchRequest;
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(E, GETS, NO_B_W) {
v_allocateTBE;
rx_recordExclusiveInTBE;
qf_queueMemoryFetchRequest;
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(E, DMA_READ, NO_DR_B_W) {
vd_allocateDmaRequestInTBE;
qd_queueMemoryRequestFromDmaRead;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
// Transitions out of O state
transition(O, GETX, NO_B_W) {
v_allocateTBE;
r_recordDataInTBE;
qf_queueMemoryFetchRequest;
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(O, GETS, O_B_W) {
v_allocateTBE;
r_recordDataInTBE;
qf_queueMemoryFetchRequest;
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(O, DMA_READ, O_DR_B_W) {
vd_allocateDmaRequestInTBE;
qd_queueMemoryRequestFromDmaRead;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
transition({E, O, NO}, DMA_WRITE, NO_DW_B_W) {
vd_allocateDmaRequestInTBE;
f_forwardWriteFromDma;
p_popDmaRequestQueue;
}
// Transitions out of NO state
transition(NO, GETX, NO_B) {
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(NO, GETS, NO_B) {
f_forwardRequest;
i_popIncomingRequestQueue;
}
transition(NO, PUT, WB) {
a_sendWriteBackAck;
i_popIncomingRequestQueue;
}
transition(NO, DMA_READ, NO_DR_B_D) {
vd_allocateDmaRequestInTBE;
f_forwardReadFromDma;
p_popDmaRequestQueue;
}
// Nack PUT requests when races cause us to believe we own the data
transition({O, E}, PUT) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
// Blocked transient states
transition({NO_B, O_B, NO_DR_B_W, NO_DW_B_W, NO_B_W, NO_DR_B_D,
NO_DR_B, O_DR_B, O_B_W, O_DR_B_W, NO_DW_W,
NO_W, O_W, WB, WB_E_W, WB_O_W},
{GETS, GETX, PUT}) {
zz_recycleRequest;
}
transition({NO_B, O_B, NO_DR_B_W, NO_DW_B_W, NO_B_W, NO_DR_B_D,
NO_DR_B, O_DR_B, O_B_W, O_DR_B_W, NO_DW_W,
NO_W, O_W, WB, WB_E_W, WB_O_W},
{DMA_READ, DMA_WRITE}) {
y_recycleDmaRequestQueue;
}
transition(NO_B, Unblock, NO) {
j_popIncomingUnblockQueue;
}
transition(O_B, Unblock, O) {
j_popIncomingUnblockQueue;
}
transition(NO_B_W, Memory_Data, NO_B) {
d_sendData;
w_deallocateTBE;
l_popMemQueue;
}
transition(NO_DR_B_W, Memory_Data, NO_DR_B) {
r_recordMemoryData;
o_checkForCompletion;
l_popMemQueue;
}
transition(O_DR_B_W, Memory_Data, O_DR_B) {
r_recordMemoryData;
dr_sendDmaData;
o_checkForCompletion;
l_popMemQueue;
}
transition({NO_DR_B, O_DR_B, NO_DR_B_D, NO_DW_B_W}, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B_W, Ack) {
m_decrementNumberOfMessages;
n_popResponseQueue;
}
transition(NO_DR_B_W, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D}, Shared_Ack) {
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B_W, Shared_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D}, Shared_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
r_setSharerBit;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B_W, Exclusive_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
n_popResponseQueue;
}
transition({NO_DR_B, NO_DR_B_D, NO_DW_B_W}, Exclusive_Data) {
r_recordCacheData;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(NO_DR_B, All_acks_and_data, O) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
g_popTriggerQueue;
}
transition(NO_DR_B_D, All_acks_and_data, O) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
g_popTriggerQueue;
}
transition(O_DR_B, All_acks_and_data_no_sharers, O) {
w_deallocateTBE;
g_popTriggerQueue;
}
transition(NO_DR_B, All_acks_and_data_no_sharers, E) {
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
g_popTriggerQueue;
}
transition(NO_DR_B_D, All_acks_and_data_no_sharers, E) {
a_assertCacheData;
//
// Note that the DMA consistency model allows us to send the DMA device
// a response as soon as we receive valid data and prior to receiving
// all acks. However, to simplify the protocol we wait for all acks.
//
dt_sendDmaDataFromTbe;
w_deallocateTBE;
g_popTriggerQueue;
}
transition(NO_DW_B_W, All_acks_and_data_no_sharers, NO_DW_W) {
dwt_writeDmaDataFromTBE;
ld_queueMemoryDmaWrite;
g_popTriggerQueue;
}
transition(NO_DW_W, Memory_Ack, E) {
da_sendDmaAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(O_B_W, Memory_Data, O_B) {
d_sendData;
w_deallocateTBE;
l_popMemQueue;
}
transition(NO_B_W, Unblock, NO_W) {
j_popIncomingUnblockQueue;
}
transition(O_B_W, Unblock, O_W) {
j_popIncomingUnblockQueue;
}
transition(NO_W, Memory_Data, NO) {
w_deallocateTBE;
l_popMemQueue;
}
transition(O_W, Memory_Data, O) {
w_deallocateTBE;
l_popMemQueue;
}
// WB State Transistions
transition(WB, Writeback_Dirty, WB_O_W) {
l_writeDataToMemory;
l_queueMemoryWBRequest;
j_popIncomingUnblockQueue;
}
transition(WB, Writeback_Exclusive_Dirty, WB_E_W) {
l_writeDataToMemory;
l_queueMemoryWBRequest;
j_popIncomingUnblockQueue;
}
transition(WB_E_W, Memory_Ack, E) {
l_popMemQueue;
}
transition(WB_O_W, Memory_Ack, O) {
l_popMemQueue;
}
transition(WB, Writeback_Clean, O) {
ll_checkIncomingWriteback;
j_popIncomingUnblockQueue;
}
transition(WB, Writeback_Exclusive_Clean, E) {
ll_checkIncomingWriteback;
j_popIncomingUnblockQueue;
}
transition(WB, Unblock, NO) {
j_popIncomingUnblockQueue;
}
}