gem5/cpu/simple_cpu/simple_cpu.hh
Steve Reinhardt d53c6c168a Get software prefetching to work in full-system mode.
Mostly a matter of keeping prefetches to invalid addrs
from messing up VM IPRs.  Also discovered that wh64s were
not being treated as prefetches, when they really should be
(for the most part, anyway).

arch/alpha/alpha_memory.cc:
arch/alpha/alpha_memory.hh:
    - Get rid of intrlock flag for locking VM fault regs (a la EV5);
    instead, just don't update regs on VPTE loads (a la EV6).
    - Add NO_FAULT MemReq flag to indicate references that should not
    cause page faults (i.e., prefetches).
arch/alpha/ev5.cc:
    - Get rid of intrlock flag for locking VM fault regs (a la EV5);
    instead, just don't update regs on VPTE loads (a la EV6).
    - Add Fault trace flag.
arch/alpha/isa_desc:
    - Add NO_FAULT MemReq flag to indicate references that should not
    cause page faults (i.e., prefetches).
    - Mark wh64 as a "data prefetch" instruction so it gets controlled
    properly by the FullCPU data prefetch control switch.
    - Align wh64 EA in decoder so issue stage doesn't need to worry about it.
arch/alpha/isa_traits.hh:
    - Get rid of intrlock flag for locking VM fault regs (a la EV5);
    instead, just don't update regs on VPTE loads (a la EV6).
base/traceflags.py:
    - Add Fault trace flag.
cpu/simple_cpu/simple_cpu.hh:
    - Pass MemReq flags to writeHint() operation.
cpu/static_inst.hh:
    Update comment re: prefetches.

--HG--
extra : convert_revision : 62e466b0f4c0ff9961796270fa2e371ec24bcbb6
2004-06-15 10:48:08 -07:00

348 lines
9.6 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __SIMPLE_CPU_HH__
#define __SIMPLE_CPU_HH__
#include "cpu/base_cpu.hh"
#include "sim/eventq.hh"
#include "base/loader/symtab.hh"
#include "cpu/pc_event.hh"
#include "base/statistics.hh"
#include "cpu/exec_context.hh"
#include "cpu/static_inst.hh"
// forward declarations
#ifdef FULL_SYSTEM
class Processor;
class Kernel;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
class MemInterface;
class Checkpoint;
namespace Trace {
class InstRecord;
}
class SimpleCPU : public BaseCPU
{
public:
// main simulation loop (one cycle)
void tick();
private:
class TickEvent : public Event
{
private:
SimpleCPU *cpu;
public:
TickEvent(SimpleCPU *c);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int delay)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + delay);
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + delay);
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
Trace::InstRecord *traceData;
template<typename T>
void trace_data(T data) {
if (traceData) {
traceData->setData(data);
}
};
public:
//
enum Status {
Running,
Idle,
IcacheMissStall,
IcacheMissComplete,
DcacheMissStall,
SwitchedOut
};
private:
Status _status;
public:
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
#ifdef FULL_SYSTEM
SimpleCPU(const std::string &_name,
System *_system,
Counter max_insts_any_thread, Counter max_insts_all_threads,
Counter max_loads_any_thread, Counter max_loads_all_threads,
AlphaITB *itb, AlphaDTB *dtb, FunctionalMemory *mem,
MemInterface *icache_interface, MemInterface *dcache_interface,
bool _def_reg, Tick freq);
#else
SimpleCPU(const std::string &_name, Process *_process,
Counter max_insts_any_thread,
Counter max_insts_all_threads,
Counter max_loads_any_thread,
Counter max_loads_all_threads,
MemInterface *icache_interface, MemInterface *dcache_interface,
bool _def_reg);
#endif
virtual ~SimpleCPU();
virtual void init();
// execution context
ExecContext *xc;
void switchOut();
void takeOverFrom(BaseCPU *oldCPU);
#ifdef FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// L1 instruction cache
MemInterface *icacheInterface;
// L1 data cache
MemInterface *dcacheInterface;
bool defer_registration;
// current instruction
MachInst inst;
// Refcounted pointer to the one memory request.
MemReqPtr memReq;
class CacheCompletionEvent : public Event
{
private:
SimpleCPU *cpu;
public:
CacheCompletionEvent(SimpleCPU *_cpu);
virtual void process();
virtual const char *description();
};
CacheCompletionEvent cacheCompletionEvent;
Status status() const { return _status; }
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache misses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for D-cache misses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
void processCacheCompletion();
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags,
uint64_t *res);
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(StaticInst<TheISA> *si, int idx)
{
return xc->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(StaticInst<TheISA> *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegInt(reg_idx);
}
void setIntReg(StaticInst<TheISA> *si, int idx, uint64_t val)
{
xc->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegSingle(StaticInst<TheISA> *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegSingle(reg_idx, val);
}
void setFloatRegDouble(StaticInst<TheISA> *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegDouble(reg_idx, val);
}
void setFloatRegInt(StaticInst<TheISA> *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegInt(reg_idx, val);
}
uint64_t readPC() { return xc->readPC(); }
void setNextPC(uint64_t val) { xc->setNextPC(val); }
uint64_t readUniq() { return xc->readUniq(); }
void setUniq(uint64_t val) { xc->setUniq(val); }
uint64_t readFpcr() { return xc->readFpcr(); }
void setFpcr(uint64_t val) { xc->setFpcr(val); }
#ifdef FULL_SYSTEM
uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
Fault hwrei() { return xc->hwrei(); }
int readIntrFlag() { return xc->readIntrFlag(); }
void setIntrFlag(int val) { xc->setIntrFlag(val); }
bool inPalMode() { return xc->inPalMode(); }
void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
#else
void syscall() { xc->syscall(); }
#endif
bool misspeculating() { return xc->misspeculating(); }
ExecContext *xcBase() { return xc; }
};
#endif // __SIMPLE_CPU_HH__