gem5/cpu/static_inst.hh
Kevin Lim e7825aab59 Changes to support automatic renaming of the shadow registers at decode time. This requires using an ExtMachInst (uint64_t) instead of the normal MachInst; the ExtMachInst is packed with extra decode context information. In the case of Alpha, the PAL mode is included.
The shadow registers are folded into the normal integer registers to ease renaming indexing.

Include the removed Opcdec class of instructions for faulting when a pal mode only instruction is decoded in non-pal mode.

arch/alpha/ev5.cc:
    Changes to automatically map the shadow registers if the instruction is in PAL mode.
arch/alpha/isa/branch.isa:
arch/alpha/isa/decoder.isa:
arch/alpha/isa/fp.isa:
arch/alpha/isa/int.isa:
arch/alpha/isa/mem.isa:
arch/alpha/isa/pal.isa:
arch/alpha/isa/unimp.isa:
    Changes for automatically using the shadow registers.  Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits.
arch/alpha/isa/main.isa:
    Changes for automatically using the shadow registers.  Now instructions must decode based on an ExtMachInst, which is a MachInst with any decode context information concatenated onto the higher order bits.

    The decoder (for Alpha) uses the 32nd bit in order to determine if the machine is in PAL mode.  If it is, then it refers to the reg_redir table to determine the true index of the register it is using.

    Also include the opcdec instruction definition.
arch/alpha/isa_traits.hh:
    Define ExtMachInst type that is used by the static inst in order to decode the instruction, given the context of being in pal mode or not.

    Redefine the number of Int registers, splitting it into NumIntArchRegs (32) and NumIntRegs (32 + 8 shadow registers).

    Change the dependence tags to reflect the integer registers include the 8 shadow registers.

    Define function to make an ExtMachInst.  Currently it is somewhat specific to Alpha; in the future it must be decided to make this more generic and possibly slower, or leave it specific to each architecture and ifdef it within the CPU.
arch/isa_parser.py:
    Have static insts decode on the ExtMachInst.
base/remote_gdb.cc:
    Support the automatic remapping of shadow registers.  Remote GDB must now look at the PC being read in order to tell if it should use the normal register indices or the shadow register indices.
cpu/o3/regfile.hh:
    Comment out the pal registers; they are now a part of the integer registers.
cpu/simple/cpu.cc:
    Create an ExtMachInst to decode on, based on the normal MachInst and the PC of the instructoin.
cpu/static_inst.hh:
    Change from MachInst to ExtMachInst to support shadow register renaming.

--HG--
extra : convert_revision : 1d23eabf735e297068e1917445a6348e9f8c88d5
2006-03-03 15:28:25 -05:00

461 lines
16 KiB
C++

/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_STATIC_INST_HH__
#define __CPU_STATIC_INST_HH__
#include <bitset>
#include <string>
#include "base/hashmap.hh"
#include "base/refcnt.hh"
#include "encumbered/cpu/full/op_class.hh"
#include "sim/host.hh"
#include "arch/isa_traits.hh"
// forward declarations
struct AlphaSimpleImpl;
class ExecContext;
class DynInst;
template <class Impl>
class AlphaDynInst;
class FastCPU;
class SimpleCPU;
class InorderCPU;
class SymbolTable;
namespace Trace {
class InstRecord;
}
/**
* Base, ISA-independent static instruction class.
*
* The main component of this class is the vector of flags and the
* associated methods for reading them. Any object that can rely
* solely on these flags can process instructions without being
* recompiled for multiple ISAs.
*/
class StaticInstBase : public RefCounted
{
protected:
/// Set of boolean static instruction properties.
///
/// Notes:
/// - The IsInteger and IsFloating flags are based on the class of
/// registers accessed by the instruction. Although most
/// instructions will have exactly one of these two flags set, it
/// is possible for an instruction to have neither (e.g., direct
/// unconditional branches, memory barriers) or both (e.g., an
/// FP/int conversion).
/// - If IsMemRef is set, then exactly one of IsLoad or IsStore
/// will be set.
/// - If IsControl is set, then exactly one of IsDirectControl or
/// IsIndirect Control will be set, and exactly one of
/// IsCondControl or IsUncondControl will be set.
/// - IsSerializing, IsMemBarrier, and IsWriteBarrier are
/// implemented as flags since in the current model there's no
/// other way for instructions to inject behavior into the
/// pipeline outside of fetch. Once we go to an exec-in-exec CPU
/// model we should be able to get rid of these flags and
/// implement this behavior via the execute() methods.
///
enum Flags {
IsNop, ///< Is a no-op (no effect at all).
IsInteger, ///< References integer regs.
IsFloating, ///< References FP regs.
IsMemRef, ///< References memory (load, store, or prefetch).
IsLoad, ///< Reads from memory (load or prefetch).
IsStore, ///< Writes to memory.
IsInstPrefetch, ///< Instruction-cache prefetch.
IsDataPrefetch, ///< Data-cache prefetch.
IsCopy, ///< Fast Cache block copy
IsControl, ///< Control transfer instruction.
IsDirectControl, ///< PC relative control transfer.
IsIndirectControl, ///< Register indirect control transfer.
IsCondControl, ///< Conditional control transfer.
IsUncondControl, ///< Unconditional control transfer.
IsCall, ///< Subroutine call.
IsReturn, ///< Subroutine return.
IsCondDelaySlot,///< Conditional Delay-Slot Instruction
IsThreadSync, ///< Thread synchronization operation.
IsSerializing, ///< Serializes pipeline: won't execute until all
/// older instructions have committed.
IsSerializeBefore,
IsSerializeAfter,
IsMemBarrier, ///< Is a memory barrier
IsWriteBarrier, ///< Is a write barrier
IsNonSpeculative, ///< Should not be executed speculatively
NumFlags
};
/// Flag values for this instruction.
std::bitset<NumFlags> flags;
/// See opClass().
OpClass _opClass;
/// See numSrcRegs().
int8_t _numSrcRegs;
/// See numDestRegs().
int8_t _numDestRegs;
/// The following are used to track physical register usage
/// for machines with separate int & FP reg files.
//@{
int8_t _numFPDestRegs;
int8_t _numIntDestRegs;
//@}
/// Constructor.
/// It's important to initialize everything here to a sane
/// default, since the decoder generally only overrides
/// the fields that are meaningful for the particular
/// instruction.
StaticInstBase(OpClass __opClass)
: _opClass(__opClass), _numSrcRegs(0), _numDestRegs(0),
_numFPDestRegs(0), _numIntDestRegs(0)
{
}
public:
/// @name Register information.
/// The sum of numFPDestRegs() and numIntDestRegs() equals
/// numDestRegs(). The former two functions are used to track
/// physical register usage for machines with separate int & FP
/// reg files.
//@{
/// Number of source registers.
int8_t numSrcRegs() const { return _numSrcRegs; }
/// Number of destination registers.
int8_t numDestRegs() const { return _numDestRegs; }
/// Number of floating-point destination regs.
int8_t numFPDestRegs() const { return _numFPDestRegs; }
/// Number of integer destination regs.
int8_t numIntDestRegs() const { return _numIntDestRegs; }
//@}
/// @name Flag accessors.
/// These functions are used to access the values of the various
/// instruction property flags. See StaticInstBase::Flags for descriptions
/// of the individual flags.
//@{
bool isNop() const { return flags[IsNop]; }
bool isMemRef() const { return flags[IsMemRef]; }
bool isLoad() const { return flags[IsLoad]; }
bool isStore() const { return flags[IsStore]; }
bool isInstPrefetch() const { return flags[IsInstPrefetch]; }
bool isDataPrefetch() const { return flags[IsDataPrefetch]; }
bool isCopy() const { return flags[IsCopy];}
bool isInteger() const { return flags[IsInteger]; }
bool isFloating() const { return flags[IsFloating]; }
bool isControl() const { return flags[IsControl]; }
bool isCall() const { return flags[IsCall]; }
bool isReturn() const { return flags[IsReturn]; }
bool isDirectCtrl() const { return flags[IsDirectControl]; }
bool isIndirectCtrl() const { return flags[IsIndirectControl]; }
bool isCondCtrl() const { return flags[IsCondControl]; }
bool isUncondCtrl() const { return flags[IsUncondControl]; }
bool isThreadSync() const { return flags[IsThreadSync]; }
bool isSerializing() const { return flags[IsSerializing] ||
flags[IsSerializeBefore] ||
flags[IsSerializeAfter]; }
bool isSerializeBefore() const { return flags[IsSerializeBefore]; }
bool isSerializeAfter() const { return flags[IsSerializeAfter]; }
bool isMemBarrier() const { return flags[IsMemBarrier]; }
bool isWriteBarrier() const { return flags[IsWriteBarrier]; }
bool isNonSpeculative() const { return flags[IsNonSpeculative]; }
//@}
/// Operation class. Used to select appropriate function unit in issue.
OpClass opClass() const { return _opClass; }
};
// forward declaration
class StaticInstPtr;
/**
* Generic yet ISA-dependent static instruction class.
*
* This class builds on StaticInstBase, defining fields and interfaces
* that are generic across all ISAs but that differ in details
* according to the specific ISA being used.
*/
class StaticInst : public StaticInstBase
{
public:
/// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
/// Binary extended machine instruction type.
typedef TheISA::ExtMachInst ExtMachInst;
/// Logical register index type.
typedef TheISA::RegIndex RegIndex;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, //< Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, //< Max dest regs
};
/// Return logical index (architectural reg num) of i'th destination reg.
/// Only the entries from 0 through numDestRegs()-1 are valid.
RegIndex destRegIdx(int i) const { return _destRegIdx[i]; }
/// Return logical index (architectural reg num) of i'th source reg.
/// Only the entries from 0 through numSrcRegs()-1 are valid.
RegIndex srcRegIdx(int i) const { return _srcRegIdx[i]; }
/// Pointer to a statically allocated "null" instruction object.
/// Used to give eaCompInst() and memAccInst() something to return
/// when called on non-memory instructions.
static StaticInstPtr nullStaticInstPtr;
/**
* Memory references only: returns "fake" instruction representing
* the effective address part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the EA computation.
*/
virtual const
StaticInstPtr &eaCompInst() const { return nullStaticInstPtr; }
/**
* Memory references only: returns "fake" instruction representing
* the memory access part of the memory operation. Used to
* obtain the dependence info (numSrcRegs and srcRegIdx[]) for
* just the memory access (not the EA computation).
*/
virtual const
StaticInstPtr &memAccInst() const { return nullStaticInstPtr; }
/// The binary machine instruction.
const ExtMachInst machInst;
protected:
/// See destRegIdx().
RegIndex _destRegIdx[MaxInstDestRegs];
/// See srcRegIdx().
RegIndex _srcRegIdx[MaxInstSrcRegs];
/**
* Base mnemonic (e.g., "add"). Used by generateDisassembly()
* methods. Also useful to readily identify instructions from
* within the debugger when #cachedDisassembly has not been
* initialized.
*/
const char *mnemonic;
/**
* String representation of disassembly (lazily evaluated via
* disassemble()).
*/
mutable std::string *cachedDisassembly;
/**
* Internal function to generate disassembly string.
*/
virtual std::string
generateDisassembly(Addr pc, const SymbolTable *symtab) const = 0;
/// Constructor.
StaticInst(const char *_mnemonic, ExtMachInst _machInst, OpClass __opClass)
: StaticInstBase(__opClass),
machInst(_machInst), mnemonic(_mnemonic), cachedDisassembly(0)
{
}
public:
virtual ~StaticInst()
{
if (cachedDisassembly)
delete cachedDisassembly;
}
/**
* The execute() signatures are auto-generated by scons based on the
* set of CPU models we are compiling in today.
*/
#include "cpu/static_inst_exec_sigs.hh"
/**
* Return the target address for a PC-relative branch.
* Invalid if not a PC-relative branch (i.e. isDirectCtrl()
* should be true).
*/
virtual Addr branchTarget(Addr branchPC) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not a PC-relative branch.");
}
/**
* Return the target address for an indirect branch (jump). The
* register value is read from the supplied execution context, so
* the result is valid only if the execution context is about to
* execute the branch in question. Invalid if not an indirect
* branch (i.e. isIndirectCtrl() should be true).
*/
virtual Addr branchTarget(ExecContext *xc) const
{
panic("StaticInst::branchTarget() called on instruction "
"that is not an indirect branch.");
}
/**
* Return true if the instruction is a control transfer, and if so,
* return the target address as well.
*/
bool hasBranchTarget(Addr pc, ExecContext *xc, Addr &tgt) const;
/**
* Return string representation of disassembled instruction.
* The default version of this function will call the internal
* virtual generateDisassembly() function to get the string,
* then cache it in #cachedDisassembly. If the disassembly
* should not be cached, this function should be overridden directly.
*/
virtual const std::string &disassemble(Addr pc,
const SymbolTable *symtab = 0) const
{
if (!cachedDisassembly)
cachedDisassembly =
new std::string(generateDisassembly(pc, symtab));
return *cachedDisassembly;
}
/// Decoded instruction cache type.
/// For now we're using a generic hash_map; this seems to work
/// pretty well.
typedef m5::hash_map<ExtMachInst, StaticInstPtr> DecodeCache;
/// A cache of decoded instruction objects.
static DecodeCache decodeCache;
/**
* Dump some basic stats on the decode cache hash map.
* Only gets called if DECODE_CACHE_HASH_STATS is defined.
*/
static void dumpDecodeCacheStats();
/// Decode a machine instruction.
/// @param mach_inst The binary instruction to decode.
/// @retval A pointer to the corresponding StaticInst object.
//This is defined as inline below.
static StaticInstPtr decode(ExtMachInst mach_inst);
};
typedef RefCountingPtr<StaticInstBase> StaticInstBasePtr;
/// Reference-counted pointer to a StaticInst object.
/// This type should be used instead of "StaticInst *" so that
/// StaticInst objects can be properly reference-counted.
class StaticInstPtr : public RefCountingPtr<StaticInst>
{
public:
/// Constructor.
StaticInstPtr()
: RefCountingPtr<StaticInst>()
{
}
/// Conversion from "StaticInst *".
StaticInstPtr(StaticInst *p)
: RefCountingPtr<StaticInst>(p)
{
}
/// Copy constructor.
StaticInstPtr(const StaticInstPtr &r)
: RefCountingPtr<StaticInst>(r)
{
}
/// Construct directly from machine instruction.
/// Calls StaticInst::decode().
StaticInstPtr(TheISA::ExtMachInst mach_inst)
: RefCountingPtr<StaticInst>(StaticInst::decode(mach_inst))
{
}
/// Convert to pointer to StaticInstBase class.
operator const StaticInstBasePtr()
{
return this->get();
}
};
inline StaticInstPtr
StaticInst::decode(StaticInst::ExtMachInst mach_inst)
{
#ifdef DECODE_CACHE_HASH_STATS
// Simple stats on decode hash_map. Turns out the default
// hash function is as good as anything I could come up with.
const int dump_every_n = 10000000;
static int decodes_til_dump = dump_every_n;
if (--decodes_til_dump == 0) {
dumpDecodeCacheStats();
decodes_til_dump = dump_every_n;
}
#endif
DecodeCache::iterator iter = decodeCache.find(mach_inst);
if (iter != decodeCache.end()) {
return iter->second;
}
StaticInstPtr si = TheISA::decodeInst(mach_inst);
decodeCache[mach_inst] = si;
return si;
}
#endif // __CPU_STATIC_INST_HH__