gem5/cpu/base.cc
Kevin Lim c23b23f4e7 Add in checker. Supports dynamically verifying the execution of instructions, as well as limited amount of control path verification. It will verify anything within the program, but anything external (traps, interrupts, XC) it assumes is redirected properly by the CPU. Similarly it assumes the results of store conditionals, uncached loads, and instructions marked as "unverifiable" are correct from the CPU.
base/traceflags.py:
build/SConstruct:
cpu/SConscript:
cpu/cpu_models.py:
    Add in Checker.
cpu/base.cc:
    Add in checker support.  Also XC status starts off as suspended.
cpu/base.hh:
    Add in checker.

--HG--
extra : convert_revision : 091b5cc83e837858adb681ef0137a0beb30bd1b2
2006-05-16 13:59:29 -04:00

401 lines
11 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <iostream>
#include <string>
#include <sstream>
#include "base/cprintf.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
#include "sim/param.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/system.hh"
#include "base/trace.hh"
#if FULL_SYSTEM
#include "kern/kernel_stats.hh"
#endif
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
#if FULL_SYSTEM
BaseCPU::BaseCPU(Params *p)
: SimObject(p->name), clock(p->clock), checkInterrupts(true),
params(p), number_of_threads(p->numberOfThreads), system(p->system)
#else
BaseCPU::BaseCPU(Params *p)
: SimObject(p->name), clock(p->clock), params(p),
number_of_threads(p->numberOfThreads)
#endif
{
DPRINTF(FullCPU, "BaseCPU: Creating object, mem address %#x.\n", this);
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(FullCPU, "BaseCPU: CPU added to cpuList, mem address %#x.\n",
this);
if (number_of_threads > maxThreadsPerCPU)
maxThreadsPerCPU = number_of_threads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comInstEventQueue[i] = new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comInstEventQueue[i], p->max_insts_any_thread,
"a thread reached the max instruction count");
if (p->max_insts_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comInstEventQueue[i],
"all threads reached the max instruction count",
p->max_insts_all_threads, *counter);
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[number_of_threads];
for (int i = 0; i < number_of_threads; ++i)
comLoadEventQueue[i] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0)
for (int i = 0; i < number_of_threads; ++i)
new SimExitEvent(comLoadEventQueue[i], p->max_loads_any_thread,
"a thread reached the max load count");
if (p->max_loads_all_threads != 0) {
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = number_of_threads;
for (int i = 0; i < number_of_threads; ++i)
new CountedExitEvent(comLoadEventQueue[i],
"all threads reached the max load count",
p->max_loads_all_threads, *counter);
}
#if FULL_SYSTEM
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
#endif
functionTracingEnabled = false;
if (p->functionTrace) {
functionTraceStream = simout.find(csprintf("ftrace.%s", name()));
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->functionTraceStart;
if (p->functionTraceStart == 0) {
functionTracingEnabled = true;
} else {
Event *e =
new EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace>(this,
true);
e->schedule(p->functionTraceStart);
}
}
#if FULL_SYSTEM
profileEvent = NULL;
if (params->profile)
profileEvent = new ProfileEvent(this, params->profile);
kernelStats = new Kernel::Statistics(system);
#endif
}
BaseCPU::Params::Params()
{
#if FULL_SYSTEM
profile = false;
#endif
checker = NULL;
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
#if FULL_SYSTEM
if (kernelStats)
delete kernelStats;
#endif
}
void
BaseCPU::init()
{
if (!params->deferRegistration)
registerExecContexts();
}
void
BaseCPU::startup()
{
#if FULL_SYSTEM
if (!params->deferRegistration && profileEvent)
profileEvent->schedule(curTick);
#endif
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
int size = execContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
execContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
execContexts[0]->regStats(name());
#if FULL_SYSTEM
if (kernelStats)
kernelStats->regStats(name() + ".kern");
#endif
}
void
BaseCPU::registerExecContexts()
{
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Suspended) {
#if FULL_SYSTEM
int id = params->cpu_id;
if (id != -1)
id += i;
xc->setCpuId(system->registerExecContext(xc, id));
#else
xc->setCpuId(xc->getProcessPtr()->registerExecContext(xc));
#endif
}
}
}
void
BaseCPU::switchOut(Sampler *sampler)
{
panic("This CPU doesn't support sampling!");
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
assert(execContexts.size() == oldCPU->execContexts.size());
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *newXC = execContexts[i];
ExecContext *oldXC = oldCPU->execContexts[i];
newXC->takeOverFrom(oldXC);
assert(newXC->readCpuId() == oldXC->readCpuId());
#if FULL_SYSTEM
system->replaceExecContext(newXC, newXC->readCpuId());
#else
assert(newXC->getProcessPtr() == oldXC->getProcessPtr());
newXC->getProcessPtr()->replaceExecContext(newXC, newXC->readCpuId());
#endif
}
#if FULL_SYSTEM
for (int i = 0; i < TheISA::NumInterruptLevels; ++i)
interrupts[i] = oldCPU->interrupts[i];
intstatus = oldCPU->intstatus;
for (int i = 0; i < execContexts.size(); ++i)
execContexts[i]->profileClear();
if (profileEvent)
profileEvent->schedule(curTick);
#endif
}
#if FULL_SYSTEM
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, int _interval)
: Event(&mainEventQueue), cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
for (int i = 0, size = cpu->execContexts.size(); i < size; ++i) {
ExecContext *xc = cpu->execContexts[i];
xc->profileSample();
}
schedule(curTick + interval);
}
void
BaseCPU::post_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d posted\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
checkInterrupts = true;
interrupts[int_num] |= 1 << index;
intstatus |= (ULL(1) << int_num);
}
void
BaseCPU::clear_interrupt(int int_num, int index)
{
DPRINTF(Interrupt, "Interrupt %d:%d cleared\n", int_num, index);
if (int_num < 0 || int_num >= TheISA::NumInterruptLevels)
panic("int_num out of bounds\n");
if (index < 0 || index >= sizeof(uint64_t) * 8)
panic("int_num out of bounds\n");
interrupts[int_num] &= ~(1 << index);
if (interrupts[int_num] == 0)
intstatus &= ~(ULL(1) << int_num);
}
void
BaseCPU::clear_interrupts()
{
DPRINTF(Interrupt, "Interrupts all cleared\n");
memset(interrupts, 0, sizeof(interrupts));
intstatus = 0;
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
SERIALIZE_SCALAR(intstatus);
#if FULL_SYSTEM
if (kernelStats)
kernelStats->serialize(os);
#endif
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ARRAY(interrupts, TheISA::NumInterruptLevels);
UNSERIALIZE_SCALAR(intstatus);
#if FULL_SYSTEM
if (kernelStats)
kernelStats->unserialize(cp, section);
#endif
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick - functionEntryTick, curTick, sym_str);
functionEntryTick = curTick;
}
}
DEFINE_SIM_OBJECT_CLASS_NAME("BaseCPU", BaseCPU)