0deef376d9
This patch includes software engineering changes and some generic bug fixes Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known issues/concernts we did not have a chance to address in this patch. High-level changes in this patch include: 1) Making XML parsing modular and hierarchical: - Shift parsing responsibility into the components - Read XML in a (mostly) context-free recursive manner so that McPAT input files can contain arbitrary component hierarchies 2) Making power, energy, and area calculations a hierarchical and recursive process - Components track their subcomponents and recursively call compute functions in stages - Make C++ object hierarchy reflect inheritance of classes of components with similar structures - Simplify computeArea() and computeEnergy() functions to eliminate successive calls to calculate separate TDP vs. runtime energy - Remove Processor component (now unnecessary) and introduce a more abstract System component 3) Standardizing McPAT output across all components - Use a single, common data structure for storing and printing McPAT output - Recursively call print functions through component hierarchy 4) For caches, allow splitting data array and tag array reads and writes for better accuracy 5) Improving the usability of CACTI by printing more helpful warning and error messages 6) Minor: Impose more rigorous code style for clarity (more work still to be done) Overall, these changes greatly reduce the amount of replicated code, and they improve McPAT runtime and decrease memory footprint.
2662 lines
133 KiB
C++
2662 lines
133 KiB
C++
/*****************************************************************************
|
|
* McPAT/CACTI
|
|
* SOFTWARE LICENSE AGREEMENT
|
|
* Copyright 2012 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
|
|
* All Rights Reserved
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
***************************************************************************/
|
|
|
|
|
|
#include "basic_circuit.h"
|
|
|
|
#include "parameter.h"
|
|
|
|
double wire_resistance(double resistivity, double wire_width,
|
|
double wire_thickness,
|
|
double barrier_thickness, double dishing_thickness,
|
|
double alpha_scatter) {
|
|
double resistance;
|
|
resistance = alpha_scatter * resistivity /
|
|
((wire_thickness - barrier_thickness - dishing_thickness) *
|
|
(wire_width - 2 * barrier_thickness));
|
|
return(resistance);
|
|
}
|
|
|
|
double wire_capacitance(double wire_width, double wire_thickness,
|
|
double wire_spacing,
|
|
double ild_thickness, double miller_value,
|
|
double horiz_dielectric_constant,
|
|
double vert_dielectric_constant, double fringe_cap) {
|
|
double vertical_cap, sidewall_cap, total_cap;
|
|
vertical_cap = 2 * PERMITTIVITY_FREE_SPACE * vert_dielectric_constant * wire_width / ild_thickness;
|
|
sidewall_cap = 2 * PERMITTIVITY_FREE_SPACE * miller_value * horiz_dielectric_constant * wire_thickness / wire_spacing;
|
|
total_cap = vertical_cap + sidewall_cap + fringe_cap;
|
|
return(total_cap);
|
|
}
|
|
|
|
|
|
void init_tech_params(double technology, bool is_tag) {
|
|
int iter, tech, tech_lo, tech_hi;
|
|
double curr_alpha, curr_vpp;
|
|
double wire_width, wire_thickness, wire_spacing,
|
|
fringe_cap, pmos_to_nmos_sizing_r;
|
|
// double aspect_ratio,ild_thickness, miller_value = 1.5, horiz_dielectric_constant, vert_dielectric_constant;
|
|
double barrier_thickness, dishing_thickness, alpha_scatter;
|
|
double curr_vdd_dram_cell, curr_v_th_dram_access_transistor, curr_I_on_dram_cell, curr_c_dram_cell;
|
|
|
|
uint32_t ram_cell_tech_type = (is_tag) ? g_ip->tag_arr_ram_cell_tech_type : g_ip->data_arr_ram_cell_tech_type;
|
|
uint32_t peri_global_tech_type = (is_tag) ? g_ip->tag_arr_peri_global_tech_type : g_ip->data_arr_peri_global_tech_type;
|
|
|
|
technology = technology * 1000.0; // in the unit of nm
|
|
|
|
// initialize parameters
|
|
g_tp.reset();
|
|
double gmp_to_gmn_multiplier_periph_global = 0;
|
|
|
|
double curr_Wmemcella_dram, curr_Wmemcellpmos_dram, curr_Wmemcellnmos_dram,
|
|
curr_area_cell_dram, curr_asp_ratio_cell_dram, curr_Wmemcella_sram,
|
|
curr_Wmemcellpmos_sram, curr_Wmemcellnmos_sram, curr_area_cell_sram,
|
|
curr_asp_ratio_cell_sram, curr_I_off_dram_cell_worst_case_length_temp;
|
|
double curr_Wmemcella_cam, curr_Wmemcellpmos_cam, curr_Wmemcellnmos_cam, curr_area_cell_cam,//Sheng: CAM data
|
|
curr_asp_ratio_cell_cam;
|
|
double SENSE_AMP_D, SENSE_AMP_P; // J
|
|
double area_cell_dram = 0;
|
|
double asp_ratio_cell_dram = 0;
|
|
double area_cell_sram = 0;
|
|
double asp_ratio_cell_sram = 0;
|
|
double area_cell_cam = 0;
|
|
double asp_ratio_cell_cam = 0;
|
|
double mobility_eff_periph_global = 0;
|
|
double Vdsat_periph_global = 0;
|
|
double nmos_effective_resistance_multiplier;
|
|
double width_dram_access_transistor;
|
|
|
|
double curr_logic_scaling_co_eff = 0;//This is based on the reported numbers of Intel Merom 65nm, Penryn45nm and IBM cell 90/65/45 date
|
|
double curr_core_tx_density = 0;//this is density per um^2; 90, ...22nm based on Intel Penryn
|
|
double curr_chip_layout_overhead = 0;
|
|
double curr_macro_layout_overhead = 0;
|
|
double curr_sckt_co_eff = 0;
|
|
|
|
if (technology < 181 && technology > 179) {
|
|
tech_lo = 180;
|
|
tech_hi = 180;
|
|
} else if (technology < 91 && technology > 89) {
|
|
tech_lo = 90;
|
|
tech_hi = 90;
|
|
} else if (technology < 66 && technology > 64) {
|
|
tech_lo = 65;
|
|
tech_hi = 65;
|
|
} else if (technology < 46 && technology > 44) {
|
|
tech_lo = 45;
|
|
tech_hi = 45;
|
|
} else if (technology < 33 && technology > 31) {
|
|
tech_lo = 32;
|
|
tech_hi = 32;
|
|
} else if (technology < 23 && technology > 21) {
|
|
tech_lo = 22;
|
|
tech_hi = 22;
|
|
if (ram_cell_tech_type == 3 ) {
|
|
cout << "current version does not support eDRAM technologies at "
|
|
<< "22nm" << endl;
|
|
exit(0);
|
|
}
|
|
} else if (technology < 180 && technology > 90) {
|
|
tech_lo = 180;
|
|
tech_hi = 90;
|
|
} else if (technology < 90 && technology > 65) {
|
|
tech_lo = 90;
|
|
tech_hi = 65;
|
|
} else if (technology < 65 && technology > 45) {
|
|
tech_lo = 65;
|
|
tech_hi = 45;
|
|
} else if (technology < 45 && technology > 32) {
|
|
tech_lo = 45;
|
|
tech_hi = 32;
|
|
} else if (technology < 32 && technology > 22) {
|
|
tech_lo = 32;
|
|
tech_hi = 22;
|
|
}
|
|
// else if (technology < 22 && technology > 16)
|
|
// {
|
|
// tech_lo = 22;
|
|
// tech_hi = 16;
|
|
// }
|
|
else {
|
|
cout << "Invalid technology nodes" << endl;
|
|
exit(0);
|
|
}
|
|
|
|
double vdd[NUMBER_TECH_FLAVORS];
|
|
double Lphy[NUMBER_TECH_FLAVORS];
|
|
double Lelec[NUMBER_TECH_FLAVORS];
|
|
double t_ox[NUMBER_TECH_FLAVORS];
|
|
double v_th[NUMBER_TECH_FLAVORS];
|
|
double c_ox[NUMBER_TECH_FLAVORS];
|
|
double mobility_eff[NUMBER_TECH_FLAVORS];
|
|
double Vdsat[NUMBER_TECH_FLAVORS];
|
|
double c_g_ideal[NUMBER_TECH_FLAVORS];
|
|
double c_fringe[NUMBER_TECH_FLAVORS];
|
|
double c_junc[NUMBER_TECH_FLAVORS];
|
|
double I_on_n[NUMBER_TECH_FLAVORS];
|
|
double I_on_p[NUMBER_TECH_FLAVORS];
|
|
double Rnchannelon[NUMBER_TECH_FLAVORS];
|
|
double Rpchannelon[NUMBER_TECH_FLAVORS];
|
|
double n_to_p_eff_curr_drv_ratio[NUMBER_TECH_FLAVORS];
|
|
double I_off_n[NUMBER_TECH_FLAVORS][101];
|
|
double I_g_on_n[NUMBER_TECH_FLAVORS][101];
|
|
double gmp_to_gmn_multiplier[NUMBER_TECH_FLAVORS];
|
|
double long_channel_leakage_reduction[NUMBER_TECH_FLAVORS];
|
|
|
|
for (iter = 0; iter <= 1; ++iter) {
|
|
// linear interpolation
|
|
if (iter == 0) {
|
|
tech = tech_lo;
|
|
if (tech_lo == tech_hi) {
|
|
curr_alpha = 1;
|
|
} else {
|
|
curr_alpha = (technology - tech_hi) / (tech_lo - tech_hi);
|
|
}
|
|
} else {
|
|
tech = tech_hi;
|
|
if (tech_lo == tech_hi) {
|
|
break;
|
|
} else {
|
|
curr_alpha = (tech_lo - technology) / (tech_lo - tech_hi);
|
|
}
|
|
}
|
|
|
|
if (tech == 180) {
|
|
//180nm technology-node. Corresponds to year 1999 in ITRS
|
|
//Only HP transistor was of interest that 180nm since leakage power was not a big issue. Performance was the king
|
|
//MASTAR does not contain data for 0.18um process. The following parameters are projected based on ITRS 2000 update and IBM 0.18 Cu Spice input
|
|
bool Aggre_proj = false;
|
|
SENSE_AMP_D = .28e-9; // s
|
|
SENSE_AMP_P = 14.7e-15; // J
|
|
vdd[0] = 1.5;
|
|
Lphy[0] = 0.12;//Lphy is the physical gate-length. micron
|
|
Lelec[0] = 0.10;//Lelec is the electrical gate-length. micron
|
|
t_ox[0] = 1.2e-3 * (Aggre_proj ? 1.9 / 1.2 : 2);//micron
|
|
v_th[0] = Aggre_proj ? 0.36 : 0.4407;//V
|
|
c_ox[0] = 1.79e-14 * (Aggre_proj ? 1.9 / 1.2 : 2);//F/micron2
|
|
mobility_eff[0] = 302.16 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[0] = 0.128 * 2; //V
|
|
c_g_ideal[0] = (Aggre_proj ? 1.9 / 1.2 : 2) * 6.64e-16;//F/micron
|
|
c_fringe[0] = (Aggre_proj ? 1.9 / 1.2 : 2) * 0.08e-15;//F/micron
|
|
c_junc[0] = (Aggre_proj ? 1.9 / 1.2 : 2) * 1e-15;//F/micron2
|
|
I_on_n[0] = 750e-6;//A/micron
|
|
I_on_p[0] = 350e-6;//A/micron
|
|
//Note that nmos_effective_resistance_multiplier, n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier values are calculated offline
|
|
nmos_effective_resistance_multiplier = 1.54;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2.45;
|
|
gmp_to_gmn_multiplier[0] = 1.22;
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
|
|
long_channel_leakage_reduction[0] = 1;
|
|
I_off_n[0][0] = 7e-10;//A/micron
|
|
I_off_n[0][10] = 8.26e-10;
|
|
I_off_n[0][20] = 9.74e-10;
|
|
I_off_n[0][30] = 1.15e-9;
|
|
I_off_n[0][40] = 1.35e-9;
|
|
I_off_n[0][50] = 1.60e-9;
|
|
I_off_n[0][60] = 1.88e-9;
|
|
I_off_n[0][70] = 2.29e-9;
|
|
I_off_n[0][80] = 2.70e-9;
|
|
I_off_n[0][90] = 3.19e-9;
|
|
I_off_n[0][100] = 3.76e-9;
|
|
|
|
I_g_on_n[0][0] = 1.65e-10;//A/micron
|
|
I_g_on_n[0][10] = 1.65e-10;
|
|
I_g_on_n[0][20] = 1.65e-10;
|
|
I_g_on_n[0][30] = 1.65e-10;
|
|
I_g_on_n[0][40] = 1.65e-10;
|
|
I_g_on_n[0][50] = 1.65e-10;
|
|
I_g_on_n[0][60] = 1.65e-10;
|
|
I_g_on_n[0][70] = 1.65e-10;
|
|
I_g_on_n[0][80] = 1.65e-10;
|
|
I_g_on_n[0][90] = 1.65e-10;
|
|
I_g_on_n[0][100] = 1.65e-10;
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;//360
|
|
curr_asp_ratio_cell_cam = 2.92;//2.5
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 1.5;//linear scaling from 90nm
|
|
curr_core_tx_density = 1.25 * 0.7 * 0.7 * 0.4;
|
|
curr_sckt_co_eff = 1.11;
|
|
curr_chip_layout_overhead = 1.0;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.0;//EDA placement and routing tool rule of thumb
|
|
|
|
}
|
|
|
|
if (tech == 90) {
|
|
SENSE_AMP_D = .28e-9; // s
|
|
SENSE_AMP_P = 14.7e-15; // J
|
|
//90nm technology-node. Corresponds to year 2004 in ITRS
|
|
//ITRS HP device type
|
|
vdd[0] = 1.2;
|
|
Lphy[0] = 0.037;//Lphy is the physical gate-length. micron
|
|
Lelec[0] = 0.0266;//Lelec is the electrical gate-length. micron
|
|
t_ox[0] = 1.2e-3;//micron
|
|
v_th[0] = 0.23707;//V
|
|
c_ox[0] = 1.79e-14;//F/micron2
|
|
mobility_eff[0] = 342.16 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[0] = 0.128; //V
|
|
c_g_ideal[0] = 6.64e-16;//F/micron
|
|
c_fringe[0] = 0.08e-15;//F/micron
|
|
c_junc[0] = 1e-15;//F/micron2
|
|
I_on_n[0] = 1076.9e-6;//A/micron
|
|
I_on_p[0] = 712.6e-6;//A/micron
|
|
//Note that nmos_effective_resistance_multiplier, n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier values are calculated offline
|
|
nmos_effective_resistance_multiplier = 1.54;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2.45;
|
|
gmp_to_gmn_multiplier[0] = 1.22;
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
|
|
long_channel_leakage_reduction[0] = 1;
|
|
I_off_n[0][0] = 3.24e-8;//A/micron
|
|
I_off_n[0][10] = 4.01e-8;
|
|
I_off_n[0][20] = 4.90e-8;
|
|
I_off_n[0][30] = 5.92e-8;
|
|
I_off_n[0][40] = 7.08e-8;
|
|
I_off_n[0][50] = 8.38e-8;
|
|
I_off_n[0][60] = 9.82e-8;
|
|
I_off_n[0][70] = 1.14e-7;
|
|
I_off_n[0][80] = 1.29e-7;
|
|
I_off_n[0][90] = 1.43e-7;
|
|
I_off_n[0][100] = 1.54e-7;
|
|
|
|
I_g_on_n[0][0] = 1.65e-8;//A/micron
|
|
I_g_on_n[0][10] = 1.65e-8;
|
|
I_g_on_n[0][20] = 1.65e-8;
|
|
I_g_on_n[0][30] = 1.65e-8;
|
|
I_g_on_n[0][40] = 1.65e-8;
|
|
I_g_on_n[0][50] = 1.65e-8;
|
|
I_g_on_n[0][60] = 1.65e-8;
|
|
I_g_on_n[0][70] = 1.65e-8;
|
|
I_g_on_n[0][80] = 1.65e-8;
|
|
I_g_on_n[0][90] = 1.65e-8;
|
|
I_g_on_n[0][100] = 1.65e-8;
|
|
|
|
//ITRS LSTP device type
|
|
vdd[1] = 1.3;
|
|
Lphy[1] = 0.075;
|
|
Lelec[1] = 0.0486;
|
|
t_ox[1] = 2.2e-3;
|
|
v_th[1] = 0.48203;
|
|
c_ox[1] = 1.22e-14;
|
|
mobility_eff[1] = 356.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[1] = 0.373;
|
|
c_g_ideal[1] = 9.15e-16;
|
|
c_fringe[1] = 0.08e-15;
|
|
c_junc[1] = 1e-15;
|
|
I_on_n[1] = 503.6e-6;
|
|
I_on_p[1] = 235.1e-6;
|
|
nmos_effective_resistance_multiplier = 1.92;
|
|
n_to_p_eff_curr_drv_ratio[1] = 2.44;
|
|
gmp_to_gmn_multiplier[1] = 0.88;
|
|
Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
|
|
Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
|
|
long_channel_leakage_reduction[1] = 1;
|
|
I_off_n[1][0] = 2.81e-12;
|
|
I_off_n[1][10] = 4.76e-12;
|
|
I_off_n[1][20] = 7.82e-12;
|
|
I_off_n[1][30] = 1.25e-11;
|
|
I_off_n[1][40] = 1.94e-11;
|
|
I_off_n[1][50] = 2.94e-11;
|
|
I_off_n[1][60] = 4.36e-11;
|
|
I_off_n[1][70] = 6.32e-11;
|
|
I_off_n[1][80] = 8.95e-11;
|
|
I_off_n[1][90] = 1.25e-10;
|
|
I_off_n[1][100] = 1.7e-10;
|
|
|
|
I_g_on_n[1][0] = 3.87e-11;//A/micron
|
|
I_g_on_n[1][10] = 3.87e-11;
|
|
I_g_on_n[1][20] = 3.87e-11;
|
|
I_g_on_n[1][30] = 3.87e-11;
|
|
I_g_on_n[1][40] = 3.87e-11;
|
|
I_g_on_n[1][50] = 3.87e-11;
|
|
I_g_on_n[1][60] = 3.87e-11;
|
|
I_g_on_n[1][70] = 3.87e-11;
|
|
I_g_on_n[1][80] = 3.87e-11;
|
|
I_g_on_n[1][90] = 3.87e-11;
|
|
I_g_on_n[1][100] = 3.87e-11;
|
|
|
|
//ITRS LOP device type
|
|
vdd[2] = 0.9;
|
|
Lphy[2] = 0.053;
|
|
Lelec[2] = 0.0354;
|
|
t_ox[2] = 1.5e-3;
|
|
v_th[2] = 0.30764;
|
|
c_ox[2] = 1.59e-14;
|
|
mobility_eff[2] = 460.39 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[2] = 0.113;
|
|
c_g_ideal[2] = 8.45e-16;
|
|
c_fringe[2] = 0.08e-15;
|
|
c_junc[2] = 1e-15;
|
|
I_on_n[2] = 386.6e-6;
|
|
I_on_p[2] = 209.7e-6;
|
|
nmos_effective_resistance_multiplier = 1.77;
|
|
n_to_p_eff_curr_drv_ratio[2] = 2.54;
|
|
gmp_to_gmn_multiplier[2] = 0.98;
|
|
Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
|
|
Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
|
|
long_channel_leakage_reduction[2] = 1;
|
|
I_off_n[2][0] = 2.14e-9;
|
|
I_off_n[2][10] = 2.9e-9;
|
|
I_off_n[2][20] = 3.87e-9;
|
|
I_off_n[2][30] = 5.07e-9;
|
|
I_off_n[2][40] = 6.54e-9;
|
|
I_off_n[2][50] = 8.27e-8;
|
|
I_off_n[2][60] = 1.02e-7;
|
|
I_off_n[2][70] = 1.20e-7;
|
|
I_off_n[2][80] = 1.36e-8;
|
|
I_off_n[2][90] = 1.52e-8;
|
|
I_off_n[2][100] = 1.73e-8;
|
|
|
|
I_g_on_n[2][0] = 4.31e-8;//A/micron
|
|
I_g_on_n[2][10] = 4.31e-8;
|
|
I_g_on_n[2][20] = 4.31e-8;
|
|
I_g_on_n[2][30] = 4.31e-8;
|
|
I_g_on_n[2][40] = 4.31e-8;
|
|
I_g_on_n[2][50] = 4.31e-8;
|
|
I_g_on_n[2][60] = 4.31e-8;
|
|
I_g_on_n[2][70] = 4.31e-8;
|
|
I_g_on_n[2][80] = 4.31e-8;
|
|
I_g_on_n[2][90] = 4.31e-8;
|
|
I_g_on_n[2][100] = 4.31e-8;
|
|
|
|
if (ram_cell_tech_type == lp_dram) {
|
|
//LP-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.2;
|
|
Lphy[3] = 0.12;
|
|
Lelec[3] = 0.0756;
|
|
curr_v_th_dram_access_transistor = 0.4545;
|
|
width_dram_access_transistor = 0.14;
|
|
curr_I_on_dram_cell = 45e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 21.1e-12;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 0.168;
|
|
curr_asp_ratio_cell_dram = 1.46;
|
|
curr_c_dram_cell = 20e-15;
|
|
|
|
//LP-DRAM wordline transistor parameters
|
|
curr_vpp = 1.6;
|
|
t_ox[3] = 2.2e-3;
|
|
v_th[3] = 0.4545;
|
|
c_ox[3] = 1.22e-14;
|
|
mobility_eff[3] = 323.95 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.3;
|
|
c_g_ideal[3] = 1.47e-15;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 321.6e-6;
|
|
I_on_p[3] = 203.3e-6;
|
|
nmos_effective_resistance_multiplier = 1.65;
|
|
n_to_p_eff_curr_drv_ratio[3] = 1.95;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 1.42e-11;
|
|
I_off_n[3][10] = 2.25e-11;
|
|
I_off_n[3][20] = 3.46e-11;
|
|
I_off_n[3][30] = 5.18e-11;
|
|
I_off_n[3][40] = 7.58e-11;
|
|
I_off_n[3][50] = 1.08e-10;
|
|
I_off_n[3][60] = 1.51e-10;
|
|
I_off_n[3][70] = 2.02e-10;
|
|
I_off_n[3][80] = 2.57e-10;
|
|
I_off_n[3][90] = 3.14e-10;
|
|
I_off_n[3][100] = 3.85e-10;
|
|
} else if (ram_cell_tech_type == comm_dram) {
|
|
//COMM-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.6;
|
|
Lphy[3] = 0.09;
|
|
Lelec[3] = 0.0576;
|
|
curr_v_th_dram_access_transistor = 1;
|
|
width_dram_access_transistor = 0.09;
|
|
curr_I_on_dram_cell = 20e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.09 * 0.09;
|
|
curr_asp_ratio_cell_dram = 1.5;
|
|
curr_c_dram_cell = 30e-15;
|
|
|
|
//COMM-DRAM wordline transistor parameters
|
|
curr_vpp = 3.7;
|
|
t_ox[3] = 5.5e-3;
|
|
v_th[3] = 1.0;
|
|
c_ox[3] = 5.65e-15;
|
|
mobility_eff[3] = 302.2 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.32;
|
|
c_g_ideal[3] = 5.08e-16;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 1094.3e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.62;
|
|
n_to_p_eff_curr_drv_ratio[3] = 2.05;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 5.80e-15;
|
|
I_off_n[3][10] = 1.21e-14;
|
|
I_off_n[3][20] = 2.42e-14;
|
|
I_off_n[3][30] = 4.65e-14;
|
|
I_off_n[3][40] = 8.60e-14;
|
|
I_off_n[3][50] = 1.54e-13;
|
|
I_off_n[3][60] = 2.66e-13;
|
|
I_off_n[3][70] = 4.45e-13;
|
|
I_off_n[3][80] = 7.17e-13;
|
|
I_off_n[3][90] = 1.11e-12;
|
|
I_off_n[3][100] = 1.67e-12;
|
|
}
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;//360
|
|
curr_asp_ratio_cell_cam = 2.92;//2.5
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 1;
|
|
curr_core_tx_density = 1.25 * 0.7 * 0.7;
|
|
curr_sckt_co_eff = 1.1539;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
|
|
|
|
}
|
|
|
|
if (tech == 65) {
|
|
//65nm technology-node. Corresponds to year 2007 in ITRS
|
|
//ITRS HP device type
|
|
SENSE_AMP_D = .2e-9; // s
|
|
SENSE_AMP_P = 5.7e-15; // J
|
|
vdd[0] = 1.1;
|
|
Lphy[0] = 0.025;
|
|
Lelec[0] = 0.019;
|
|
t_ox[0] = 1.1e-3;
|
|
v_th[0] = .19491;
|
|
c_ox[0] = 1.88e-14;
|
|
mobility_eff[0] = 436.24 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[0] = 7.71e-2;
|
|
c_g_ideal[0] = 4.69e-16;
|
|
c_fringe[0] = 0.077e-15;
|
|
c_junc[0] = 1e-15;
|
|
I_on_n[0] = 1197.2e-6;
|
|
I_on_p[0] = 870.8e-6;
|
|
nmos_effective_resistance_multiplier = 1.50;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2.41;
|
|
gmp_to_gmn_multiplier[0] = 1.38;
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
|
|
long_channel_leakage_reduction[0] = 1 / 3.74;
|
|
//Using MASTAR, @380K, increase Lgate until Ion reduces to 90% or Lgate increase by 10%, whichever comes first
|
|
//Ioff(Lgate normal)/Ioff(Lgate long)= 3.74.
|
|
I_off_n[0][0] = 1.96e-7;
|
|
I_off_n[0][10] = 2.29e-7;
|
|
I_off_n[0][20] = 2.66e-7;
|
|
I_off_n[0][30] = 3.05e-7;
|
|
I_off_n[0][40] = 3.49e-7;
|
|
I_off_n[0][50] = 3.95e-7;
|
|
I_off_n[0][60] = 4.45e-7;
|
|
I_off_n[0][70] = 4.97e-7;
|
|
I_off_n[0][80] = 5.48e-7;
|
|
I_off_n[0][90] = 5.94e-7;
|
|
I_off_n[0][100] = 6.3e-7;
|
|
I_g_on_n[0][0] = 4.09e-8;//A/micron
|
|
I_g_on_n[0][10] = 4.09e-8;
|
|
I_g_on_n[0][20] = 4.09e-8;
|
|
I_g_on_n[0][30] = 4.09e-8;
|
|
I_g_on_n[0][40] = 4.09e-8;
|
|
I_g_on_n[0][50] = 4.09e-8;
|
|
I_g_on_n[0][60] = 4.09e-8;
|
|
I_g_on_n[0][70] = 4.09e-8;
|
|
I_g_on_n[0][80] = 4.09e-8;
|
|
I_g_on_n[0][90] = 4.09e-8;
|
|
I_g_on_n[0][100] = 4.09e-8;
|
|
|
|
//ITRS LSTP device type
|
|
vdd[1] = 1.2;
|
|
Lphy[1] = 0.045;
|
|
Lelec[1] = 0.0298;
|
|
t_ox[1] = 1.9e-3;
|
|
v_th[1] = 0.52354;
|
|
c_ox[1] = 1.36e-14;
|
|
mobility_eff[1] = 341.21 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[1] = 0.128;
|
|
c_g_ideal[1] = 6.14e-16;
|
|
c_fringe[1] = 0.08e-15;
|
|
c_junc[1] = 1e-15;
|
|
I_on_n[1] = 519.2e-6;
|
|
I_on_p[1] = 266e-6;
|
|
nmos_effective_resistance_multiplier = 1.96;
|
|
n_to_p_eff_curr_drv_ratio[1] = 2.23;
|
|
gmp_to_gmn_multiplier[1] = 0.99;
|
|
Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
|
|
Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
|
|
long_channel_leakage_reduction[1] = 1 / 2.82;
|
|
I_off_n[1][0] = 9.12e-12;
|
|
I_off_n[1][10] = 1.49e-11;
|
|
I_off_n[1][20] = 2.36e-11;
|
|
I_off_n[1][30] = 3.64e-11;
|
|
I_off_n[1][40] = 5.48e-11;
|
|
I_off_n[1][50] = 8.05e-11;
|
|
I_off_n[1][60] = 1.15e-10;
|
|
I_off_n[1][70] = 1.59e-10;
|
|
I_off_n[1][80] = 2.1e-10;
|
|
I_off_n[1][90] = 2.62e-10;
|
|
I_off_n[1][100] = 3.21e-10;
|
|
|
|
I_g_on_n[1][0] = 1.09e-10;//A/micron
|
|
I_g_on_n[1][10] = 1.09e-10;
|
|
I_g_on_n[1][20] = 1.09e-10;
|
|
I_g_on_n[1][30] = 1.09e-10;
|
|
I_g_on_n[1][40] = 1.09e-10;
|
|
I_g_on_n[1][50] = 1.09e-10;
|
|
I_g_on_n[1][60] = 1.09e-10;
|
|
I_g_on_n[1][70] = 1.09e-10;
|
|
I_g_on_n[1][80] = 1.09e-10;
|
|
I_g_on_n[1][90] = 1.09e-10;
|
|
I_g_on_n[1][100] = 1.09e-10;
|
|
|
|
//ITRS LOP device type
|
|
vdd[2] = 0.8;
|
|
Lphy[2] = 0.032;
|
|
Lelec[2] = 0.0216;
|
|
t_ox[2] = 1.2e-3;
|
|
v_th[2] = 0.28512;
|
|
c_ox[2] = 1.87e-14;
|
|
mobility_eff[2] = 495.19 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[2] = 0.292;
|
|
c_g_ideal[2] = 6e-16;
|
|
c_fringe[2] = 0.08e-15;
|
|
c_junc[2] = 1e-15;
|
|
I_on_n[2] = 573.1e-6;
|
|
I_on_p[2] = 340.6e-6;
|
|
nmos_effective_resistance_multiplier = 1.82;
|
|
n_to_p_eff_curr_drv_ratio[2] = 2.28;
|
|
gmp_to_gmn_multiplier[2] = 1.11;
|
|
Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
|
|
Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
|
|
long_channel_leakage_reduction[2] = 1 / 2.05;
|
|
I_off_n[2][0] = 4.9e-9;
|
|
I_off_n[2][10] = 6.49e-9;
|
|
I_off_n[2][20] = 8.45e-9;
|
|
I_off_n[2][30] = 1.08e-8;
|
|
I_off_n[2][40] = 1.37e-8;
|
|
I_off_n[2][50] = 1.71e-8;
|
|
I_off_n[2][60] = 2.09e-8;
|
|
I_off_n[2][70] = 2.48e-8;
|
|
I_off_n[2][80] = 2.84e-8;
|
|
I_off_n[2][90] = 3.13e-8;
|
|
I_off_n[2][100] = 3.42e-8;
|
|
|
|
I_g_on_n[2][0] = 9.61e-9;//A/micron
|
|
I_g_on_n[2][10] = 9.61e-9;
|
|
I_g_on_n[2][20] = 9.61e-9;
|
|
I_g_on_n[2][30] = 9.61e-9;
|
|
I_g_on_n[2][40] = 9.61e-9;
|
|
I_g_on_n[2][50] = 9.61e-9;
|
|
I_g_on_n[2][60] = 9.61e-9;
|
|
I_g_on_n[2][70] = 9.61e-9;
|
|
I_g_on_n[2][80] = 9.61e-9;
|
|
I_g_on_n[2][90] = 9.61e-9;
|
|
I_g_on_n[2][100] = 9.61e-9;
|
|
|
|
if (ram_cell_tech_type == lp_dram) {
|
|
//LP-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.2;
|
|
Lphy[3] = 0.12;
|
|
Lelec[3] = 0.0756;
|
|
curr_v_th_dram_access_transistor = 0.43806;
|
|
width_dram_access_transistor = 0.09;
|
|
curr_I_on_dram_cell = 36e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 19.6e-12;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 0.11;
|
|
curr_asp_ratio_cell_dram = 1.46;
|
|
curr_c_dram_cell = 20e-15;
|
|
|
|
//LP-DRAM wordline transistor parameters
|
|
curr_vpp = 1.6;
|
|
t_ox[3] = 2.2e-3;
|
|
v_th[3] = 0.43806;
|
|
c_ox[3] = 1.22e-14;
|
|
mobility_eff[3] = 328.32 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.43806;
|
|
c_g_ideal[3] = 1.46e-15;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15 ;
|
|
I_on_n[3] = 399.8e-6;
|
|
I_on_p[3] = 243.4e-6;
|
|
nmos_effective_resistance_multiplier = 1.65;
|
|
n_to_p_eff_curr_drv_ratio[3] = 2.05;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 2.23e-11;
|
|
I_off_n[3][10] = 3.46e-11;
|
|
I_off_n[3][20] = 5.24e-11;
|
|
I_off_n[3][30] = 7.75e-11;
|
|
I_off_n[3][40] = 1.12e-10;
|
|
I_off_n[3][50] = 1.58e-10;
|
|
I_off_n[3][60] = 2.18e-10;
|
|
I_off_n[3][70] = 2.88e-10;
|
|
I_off_n[3][80] = 3.63e-10;
|
|
I_off_n[3][90] = 4.41e-10;
|
|
I_off_n[3][100] = 5.36e-10;
|
|
} else if (ram_cell_tech_type == comm_dram) {
|
|
//COMM-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.3;
|
|
Lphy[3] = 0.065;
|
|
Lelec[3] = 0.0426;
|
|
curr_v_th_dram_access_transistor = 1;
|
|
width_dram_access_transistor = 0.065;
|
|
curr_I_on_dram_cell = 20e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.065 * 0.065;
|
|
curr_asp_ratio_cell_dram = 1.5;
|
|
curr_c_dram_cell = 30e-15;
|
|
|
|
//COMM-DRAM wordline transistor parameters
|
|
curr_vpp = 3.3;
|
|
t_ox[3] = 5e-3;
|
|
v_th[3] = 1.0;
|
|
c_ox[3] = 6.16e-15;
|
|
mobility_eff[3] = 303.44 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.385;
|
|
c_g_ideal[3] = 4e-16;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15 ;
|
|
I_on_n[3] = 1031e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.69;
|
|
n_to_p_eff_curr_drv_ratio[3] = 2.39;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 1.80e-14;
|
|
I_off_n[3][10] = 3.64e-14;
|
|
I_off_n[3][20] = 7.03e-14;
|
|
I_off_n[3][30] = 1.31e-13;
|
|
I_off_n[3][40] = 2.35e-13;
|
|
I_off_n[3][50] = 4.09e-13;
|
|
I_off_n[3][60] = 6.89e-13;
|
|
I_off_n[3][70] = 1.13e-12;
|
|
I_off_n[3][80] = 1.78e-12;
|
|
I_off_n[3][90] = 2.71e-12;
|
|
I_off_n[3][100] = 3.99e-12;
|
|
}
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_cam = 2.92;
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 0.7; //Rather than scale proportionally to square of feature size, only scale linearly according to IBM cell processor
|
|
curr_core_tx_density = 1.25 * 0.7;
|
|
curr_sckt_co_eff = 1.1359;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
}
|
|
|
|
if (tech == 45) {
|
|
//45nm technology-node. Corresponds to year 2010 in ITRS
|
|
//ITRS HP device type
|
|
SENSE_AMP_D = .04e-9; // s
|
|
SENSE_AMP_P = 2.7e-15; // J
|
|
vdd[0] = 1.0;
|
|
Lphy[0] = 0.018;
|
|
Lelec[0] = 0.01345;
|
|
t_ox[0] = 0.65e-3;
|
|
v_th[0] = .18035;
|
|
c_ox[0] = 3.77e-14;
|
|
mobility_eff[0] = 266.68 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[0] = 9.38E-2;
|
|
c_g_ideal[0] = 6.78e-16;
|
|
c_fringe[0] = 0.05e-15;
|
|
c_junc[0] = 1e-15;
|
|
I_on_n[0] = 2046.6e-6;
|
|
//There are certain problems with the ITRS PMOS numbers in MASTAR for 45nm. So we are using 65nm values of
|
|
//n_to_p_eff_curr_drv_ratio and gmp_to_gmn_multiplier for 45nm
|
|
I_on_p[0] = I_on_n[0] / 2;//This value is fixed arbitrarily but I_on_p is not being used in CACTI
|
|
nmos_effective_resistance_multiplier = 1.51;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2.41;
|
|
gmp_to_gmn_multiplier[0] = 1.38;
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];
|
|
//Using MASTAR, @380K, increase Lgate until Ion reduces to 90%,
|
|
//Ioff(Lgate normal)/Ioff(Lgate long)= 3.74
|
|
long_channel_leakage_reduction[0] = 1 / 3.546;
|
|
I_off_n[0][0] = 2.8e-7;
|
|
I_off_n[0][10] = 3.28e-7;
|
|
I_off_n[0][20] = 3.81e-7;
|
|
I_off_n[0][30] = 4.39e-7;
|
|
I_off_n[0][40] = 5.02e-7;
|
|
I_off_n[0][50] = 5.69e-7;
|
|
I_off_n[0][60] = 6.42e-7;
|
|
I_off_n[0][70] = 7.2e-7;
|
|
I_off_n[0][80] = 8.03e-7;
|
|
I_off_n[0][90] = 8.91e-7;
|
|
I_off_n[0][100] = 9.84e-7;
|
|
|
|
I_g_on_n[0][0] = 3.59e-8;//A/micron
|
|
I_g_on_n[0][10] = 3.59e-8;
|
|
I_g_on_n[0][20] = 3.59e-8;
|
|
I_g_on_n[0][30] = 3.59e-8;
|
|
I_g_on_n[0][40] = 3.59e-8;
|
|
I_g_on_n[0][50] = 3.59e-8;
|
|
I_g_on_n[0][60] = 3.59e-8;
|
|
I_g_on_n[0][70] = 3.59e-8;
|
|
I_g_on_n[0][80] = 3.59e-8;
|
|
I_g_on_n[0][90] = 3.59e-8;
|
|
I_g_on_n[0][100] = 3.59e-8;
|
|
|
|
//ITRS LSTP device type
|
|
vdd[1] = 1.1;
|
|
Lphy[1] = 0.028;
|
|
Lelec[1] = 0.0212;
|
|
t_ox[1] = 1.4e-3;
|
|
v_th[1] = 0.50245;
|
|
c_ox[1] = 2.01e-14;
|
|
mobility_eff[1] = 363.96 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[1] = 9.12e-2;
|
|
c_g_ideal[1] = 5.18e-16;
|
|
c_fringe[1] = 0.08e-15;
|
|
c_junc[1] = 1e-15;
|
|
I_on_n[1] = 666.2e-6;
|
|
I_on_p[1] = I_on_n[1] / 2;
|
|
nmos_effective_resistance_multiplier = 1.99;
|
|
n_to_p_eff_curr_drv_ratio[1] = 2.23;
|
|
gmp_to_gmn_multiplier[1] = 0.99;
|
|
Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
|
|
Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
|
|
long_channel_leakage_reduction[1] = 1 / 2.08;
|
|
I_off_n[1][0] = 1.01e-11;
|
|
I_off_n[1][10] = 1.65e-11;
|
|
I_off_n[1][20] = 2.62e-11;
|
|
I_off_n[1][30] = 4.06e-11;
|
|
I_off_n[1][40] = 6.12e-11;
|
|
I_off_n[1][50] = 9.02e-11;
|
|
I_off_n[1][60] = 1.3e-10;
|
|
I_off_n[1][70] = 1.83e-10;
|
|
I_off_n[1][80] = 2.51e-10;
|
|
I_off_n[1][90] = 3.29e-10;
|
|
I_off_n[1][100] = 4.1e-10;
|
|
|
|
I_g_on_n[1][0] = 9.47e-12;//A/micron
|
|
I_g_on_n[1][10] = 9.47e-12;
|
|
I_g_on_n[1][20] = 9.47e-12;
|
|
I_g_on_n[1][30] = 9.47e-12;
|
|
I_g_on_n[1][40] = 9.47e-12;
|
|
I_g_on_n[1][50] = 9.47e-12;
|
|
I_g_on_n[1][60] = 9.47e-12;
|
|
I_g_on_n[1][70] = 9.47e-12;
|
|
I_g_on_n[1][80] = 9.47e-12;
|
|
I_g_on_n[1][90] = 9.47e-12;
|
|
I_g_on_n[1][100] = 9.47e-12;
|
|
|
|
//ITRS LOP device type
|
|
vdd[2] = 0.7;
|
|
Lphy[2] = 0.022;
|
|
Lelec[2] = 0.016;
|
|
t_ox[2] = 0.9e-3;
|
|
v_th[2] = 0.22599;
|
|
c_ox[2] = 2.82e-14;//F/micron2
|
|
mobility_eff[2] = 508.9 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[2] = 5.71e-2;
|
|
c_g_ideal[2] = 6.2e-16;
|
|
c_fringe[2] = 0.073e-15;
|
|
c_junc[2] = 1e-15;
|
|
I_on_n[2] = 748.9e-6;
|
|
I_on_p[2] = I_on_n[2] / 2;
|
|
nmos_effective_resistance_multiplier = 1.76;
|
|
n_to_p_eff_curr_drv_ratio[2] = 2.28;
|
|
gmp_to_gmn_multiplier[2] = 1.11;
|
|
Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
|
|
Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
|
|
long_channel_leakage_reduction[2] = 1 / 1.92;
|
|
I_off_n[2][0] = 4.03e-9;
|
|
I_off_n[2][10] = 5.02e-9;
|
|
I_off_n[2][20] = 6.18e-9;
|
|
I_off_n[2][30] = 7.51e-9;
|
|
I_off_n[2][40] = 9.04e-9;
|
|
I_off_n[2][50] = 1.08e-8;
|
|
I_off_n[2][60] = 1.27e-8;
|
|
I_off_n[2][70] = 1.47e-8;
|
|
I_off_n[2][80] = 1.66e-8;
|
|
I_off_n[2][90] = 1.84e-8;
|
|
I_off_n[2][100] = 2.03e-8;
|
|
|
|
I_g_on_n[2][0] = 3.24e-8;//A/micron
|
|
I_g_on_n[2][10] = 4.01e-8;
|
|
I_g_on_n[2][20] = 4.90e-8;
|
|
I_g_on_n[2][30] = 5.92e-8;
|
|
I_g_on_n[2][40] = 7.08e-8;
|
|
I_g_on_n[2][50] = 8.38e-8;
|
|
I_g_on_n[2][60] = 9.82e-8;
|
|
I_g_on_n[2][70] = 1.14e-7;
|
|
I_g_on_n[2][80] = 1.29e-7;
|
|
I_g_on_n[2][90] = 1.43e-7;
|
|
I_g_on_n[2][100] = 1.54e-7;
|
|
|
|
if (ram_cell_tech_type == lp_dram) {
|
|
//LP-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.1;
|
|
Lphy[3] = 0.078;
|
|
Lelec[3] = 0.0504;// Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
|
|
curr_v_th_dram_access_transistor = 0.44559;
|
|
width_dram_access_transistor = 0.079;
|
|
curr_I_on_dram_cell = 36e-6;//A
|
|
curr_I_off_dram_cell_worst_case_length_temp = 19.5e-12;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
|
|
curr_asp_ratio_cell_dram = 1.46;
|
|
curr_c_dram_cell = 20e-15;
|
|
|
|
//LP-DRAM wordline transistor parameters
|
|
curr_vpp = 1.5;
|
|
t_ox[3] = 2.1e-3;
|
|
v_th[3] = 0.44559;
|
|
c_ox[3] = 1.41e-14;
|
|
mobility_eff[3] = 426.30 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.181;
|
|
c_g_ideal[3] = 1.10e-15;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 456e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.65;
|
|
n_to_p_eff_curr_drv_ratio[3] = 2.05;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 2.54e-11;
|
|
I_off_n[3][10] = 3.94e-11;
|
|
I_off_n[3][20] = 5.95e-11;
|
|
I_off_n[3][30] = 8.79e-11;
|
|
I_off_n[3][40] = 1.27e-10;
|
|
I_off_n[3][50] = 1.79e-10;
|
|
I_off_n[3][60] = 2.47e-10;
|
|
I_off_n[3][70] = 3.31e-10;
|
|
I_off_n[3][80] = 4.26e-10;
|
|
I_off_n[3][90] = 5.27e-10;
|
|
I_off_n[3][100] = 6.46e-10;
|
|
} else if (ram_cell_tech_type == comm_dram) {
|
|
//COMM-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.1;
|
|
Lphy[3] = 0.045;
|
|
Lelec[3] = 0.0298;
|
|
curr_v_th_dram_access_transistor = 1;
|
|
width_dram_access_transistor = 0.045;
|
|
curr_I_on_dram_cell = 20e-6;//A
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.045 * 0.045;
|
|
curr_asp_ratio_cell_dram = 1.5;
|
|
curr_c_dram_cell = 30e-15;
|
|
|
|
//COMM-DRAM wordline transistor parameters
|
|
curr_vpp = 2.7;
|
|
t_ox[3] = 4e-3;
|
|
v_th[3] = 1.0;
|
|
c_ox[3] = 7.98e-15;
|
|
mobility_eff[3] = 368.58 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.147;
|
|
c_g_ideal[3] = 3.59e-16;
|
|
c_fringe[3] = 0.08e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 999.4e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.69;
|
|
n_to_p_eff_curr_drv_ratio[3] = 1.95;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 1.31e-14;
|
|
I_off_n[3][10] = 2.68e-14;
|
|
I_off_n[3][20] = 5.25e-14;
|
|
I_off_n[3][30] = 9.88e-14;
|
|
I_off_n[3][40] = 1.79e-13;
|
|
I_off_n[3][50] = 3.15e-13;
|
|
I_off_n[3][60] = 5.36e-13;
|
|
I_off_n[3][70] = 8.86e-13;
|
|
I_off_n[3][80] = 1.42e-12;
|
|
I_off_n[3][90] = 2.20e-12;
|
|
I_off_n[3][100] = 3.29e-12;
|
|
}
|
|
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_cam = 2.92;
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 0.7 * 0.7;
|
|
curr_core_tx_density = 1.25;
|
|
curr_sckt_co_eff = 1.1387;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
}
|
|
|
|
if (tech == 32) {
|
|
SENSE_AMP_D = .03e-9; // s
|
|
SENSE_AMP_P = 2.16e-15; // J
|
|
//For 2013, MPU/ASIC stagger-contacted M1 half-pitch is 32 nm (so this is 32 nm
|
|
//technology i.e. FEATURESIZE = 0.032). Using the SOI process numbers for
|
|
//HP and LSTP.
|
|
vdd[0] = 0.9;
|
|
Lphy[0] = 0.013;
|
|
Lelec[0] = 0.01013;
|
|
t_ox[0] = 0.5e-3;
|
|
v_th[0] = 0.21835;
|
|
c_ox[0] = 4.11e-14;
|
|
mobility_eff[0] = 361.84 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[0] = 5.09E-2;
|
|
c_g_ideal[0] = 5.34e-16;
|
|
c_fringe[0] = 0.04e-15;
|
|
c_junc[0] = 1e-15;
|
|
I_on_n[0] = 2211.7e-6;
|
|
I_on_p[0] = I_on_n[0] / 2;
|
|
nmos_effective_resistance_multiplier = 1.49;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2.41;
|
|
gmp_to_gmn_multiplier[0] = 1.38;
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
|
|
long_channel_leakage_reduction[0] = 1 / 3.706;
|
|
//Using MASTAR, @300K (380K does not work in MASTAR), increase Lgate until Ion reduces to 95% or Lgate increase by 5% (DG device can only increase by 5%),
|
|
//whichever comes first
|
|
I_off_n[0][0] = 1.52e-7;
|
|
I_off_n[0][10] = 1.55e-7;
|
|
I_off_n[0][20] = 1.59e-7;
|
|
I_off_n[0][30] = 1.68e-7;
|
|
I_off_n[0][40] = 1.90e-7;
|
|
I_off_n[0][50] = 2.69e-7;
|
|
I_off_n[0][60] = 5.32e-7;
|
|
I_off_n[0][70] = 1.02e-6;
|
|
I_off_n[0][80] = 1.62e-6;
|
|
I_off_n[0][90] = 2.73e-6;
|
|
I_off_n[0][100] = 6.1e-6;
|
|
|
|
I_g_on_n[0][0] = 6.55e-8;//A/micron
|
|
I_g_on_n[0][10] = 6.55e-8;
|
|
I_g_on_n[0][20] = 6.55e-8;
|
|
I_g_on_n[0][30] = 6.55e-8;
|
|
I_g_on_n[0][40] = 6.55e-8;
|
|
I_g_on_n[0][50] = 6.55e-8;
|
|
I_g_on_n[0][60] = 6.55e-8;
|
|
I_g_on_n[0][70] = 6.55e-8;
|
|
I_g_on_n[0][80] = 6.55e-8;
|
|
I_g_on_n[0][90] = 6.55e-8;
|
|
I_g_on_n[0][100] = 6.55e-8;
|
|
|
|
//LSTP device type
|
|
vdd[1] = 1;
|
|
Lphy[1] = 0.020;
|
|
Lelec[1] = 0.0173;
|
|
t_ox[1] = 1.2e-3;
|
|
v_th[1] = 0.513;
|
|
c_ox[1] = 2.29e-14;
|
|
mobility_eff[1] = 347.46 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[1] = 8.64e-2;
|
|
c_g_ideal[1] = 4.58e-16;
|
|
c_fringe[1] = 0.053e-15;
|
|
c_junc[1] = 1e-15;
|
|
I_on_n[1] = 683.6e-6;
|
|
I_on_p[1] = I_on_n[1] / 2;
|
|
nmos_effective_resistance_multiplier = 1.99;
|
|
n_to_p_eff_curr_drv_ratio[1] = 2.23;
|
|
gmp_to_gmn_multiplier[1] = 0.99;
|
|
Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];
|
|
Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];
|
|
long_channel_leakage_reduction[1] = 1 / 1.93;
|
|
I_off_n[1][0] = 2.06e-11;
|
|
I_off_n[1][10] = 3.30e-11;
|
|
I_off_n[1][20] = 5.15e-11;
|
|
I_off_n[1][30] = 7.83e-11;
|
|
I_off_n[1][40] = 1.16e-10;
|
|
I_off_n[1][50] = 1.69e-10;
|
|
I_off_n[1][60] = 2.40e-10;
|
|
I_off_n[1][70] = 3.34e-10;
|
|
I_off_n[1][80] = 4.54e-10;
|
|
I_off_n[1][90] = 5.96e-10;
|
|
I_off_n[1][100] = 7.44e-10;
|
|
|
|
I_g_on_n[1][0] = 3.73e-11;//A/micron
|
|
I_g_on_n[1][10] = 3.73e-11;
|
|
I_g_on_n[1][20] = 3.73e-11;
|
|
I_g_on_n[1][30] = 3.73e-11;
|
|
I_g_on_n[1][40] = 3.73e-11;
|
|
I_g_on_n[1][50] = 3.73e-11;
|
|
I_g_on_n[1][60] = 3.73e-11;
|
|
I_g_on_n[1][70] = 3.73e-11;
|
|
I_g_on_n[1][80] = 3.73e-11;
|
|
I_g_on_n[1][90] = 3.73e-11;
|
|
I_g_on_n[1][100] = 3.73e-11;
|
|
|
|
//LOP device type
|
|
vdd[2] = 0.6;
|
|
Lphy[2] = 0.016;
|
|
Lelec[2] = 0.01232;
|
|
t_ox[2] = 0.9e-3;
|
|
v_th[2] = 0.24227;
|
|
c_ox[2] = 2.84e-14;
|
|
mobility_eff[2] = 513.52 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[2] = 4.64e-2;
|
|
c_g_ideal[2] = 4.54e-16;
|
|
c_fringe[2] = 0.057e-15;
|
|
c_junc[2] = 1e-15;
|
|
I_on_n[2] = 827.8e-6;
|
|
I_on_p[2] = I_on_n[2] / 2;
|
|
nmos_effective_resistance_multiplier = 1.73;
|
|
n_to_p_eff_curr_drv_ratio[2] = 2.28;
|
|
gmp_to_gmn_multiplier[2] = 1.11;
|
|
Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];
|
|
Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];
|
|
long_channel_leakage_reduction[2] = 1 / 1.89;
|
|
I_off_n[2][0] = 5.94e-8;
|
|
I_off_n[2][10] = 7.23e-8;
|
|
I_off_n[2][20] = 8.7e-8;
|
|
I_off_n[2][30] = 1.04e-7;
|
|
I_off_n[2][40] = 1.22e-7;
|
|
I_off_n[2][50] = 1.43e-7;
|
|
I_off_n[2][60] = 1.65e-7;
|
|
I_off_n[2][70] = 1.90e-7;
|
|
I_off_n[2][80] = 2.15e-7;
|
|
I_off_n[2][90] = 2.39e-7;
|
|
I_off_n[2][100] = 2.63e-7;
|
|
|
|
I_g_on_n[2][0] = 2.93e-9;//A/micron
|
|
I_g_on_n[2][10] = 2.93e-9;
|
|
I_g_on_n[2][20] = 2.93e-9;
|
|
I_g_on_n[2][30] = 2.93e-9;
|
|
I_g_on_n[2][40] = 2.93e-9;
|
|
I_g_on_n[2][50] = 2.93e-9;
|
|
I_g_on_n[2][60] = 2.93e-9;
|
|
I_g_on_n[2][70] = 2.93e-9;
|
|
I_g_on_n[2][80] = 2.93e-9;
|
|
I_g_on_n[2][90] = 2.93e-9;
|
|
I_g_on_n[2][100] = 2.93e-9;
|
|
|
|
if (ram_cell_tech_type == lp_dram) {
|
|
//LP-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.0;
|
|
Lphy[3] = 0.056;
|
|
Lelec[3] = 0.0419;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
|
|
curr_v_th_dram_access_transistor = 0.44129;
|
|
width_dram_access_transistor = 0.056;
|
|
curr_I_on_dram_cell = 36e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 18.9e-12;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = width_dram_access_transistor * Lphy[3] * 10.0;
|
|
curr_asp_ratio_cell_dram = 1.46;
|
|
curr_c_dram_cell = 20e-15;
|
|
|
|
//LP-DRAM wordline transistor parameters
|
|
curr_vpp = 1.5;
|
|
t_ox[3] = 2e-3;
|
|
v_th[3] = 0.44467;
|
|
c_ox[3] = 1.48e-14;
|
|
mobility_eff[3] = 408.12 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.174;
|
|
c_g_ideal[3] = 7.45e-16;
|
|
c_fringe[3] = 0.053e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 1055.4e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.65;
|
|
n_to_p_eff_curr_drv_ratio[3] = 2.05;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 3.57e-11;
|
|
I_off_n[3][10] = 5.51e-11;
|
|
I_off_n[3][20] = 8.27e-11;
|
|
I_off_n[3][30] = 1.21e-10;
|
|
I_off_n[3][40] = 1.74e-10;
|
|
I_off_n[3][50] = 2.45e-10;
|
|
I_off_n[3][60] = 3.38e-10;
|
|
I_off_n[3][70] = 4.53e-10;
|
|
I_off_n[3][80] = 5.87e-10;
|
|
I_off_n[3][90] = 7.29e-10;
|
|
I_off_n[3][100] = 8.87e-10;
|
|
} else if (ram_cell_tech_type == comm_dram) {
|
|
//COMM-DRAM cell access transistor technology parameters
|
|
curr_vdd_dram_cell = 1.0;
|
|
Lphy[3] = 0.032;
|
|
Lelec[3] = 0.0205;//Assume Lelec is 30% lesser than Lphy for DRAM access and wordline transistors.
|
|
curr_v_th_dram_access_transistor = 1;
|
|
width_dram_access_transistor = 0.032;
|
|
curr_I_on_dram_cell = 20e-6;
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.032 * 0.032;
|
|
curr_asp_ratio_cell_dram = 1.5;
|
|
curr_c_dram_cell = 30e-15;
|
|
|
|
//COMM-DRAM wordline transistor parameters
|
|
curr_vpp = 2.6;
|
|
t_ox[3] = 4e-3;
|
|
v_th[3] = 1.0;
|
|
c_ox[3] = 7.99e-15;
|
|
mobility_eff[3] = 380.76 * (1e-2 * 1e6 * 1e-2 * 1e6);
|
|
Vdsat[3] = 0.129;
|
|
c_g_ideal[3] = 2.56e-16;
|
|
c_fringe[3] = 0.053e-15;
|
|
c_junc[3] = 1e-15;
|
|
I_on_n[3] = 1024.5e-6;
|
|
I_on_p[3] = I_on_n[3] / 2;
|
|
nmos_effective_resistance_multiplier = 1.69;
|
|
n_to_p_eff_curr_drv_ratio[3] = 1.95;
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 3.63e-14;
|
|
I_off_n[3][10] = 7.18e-14;
|
|
I_off_n[3][20] = 1.36e-13;
|
|
I_off_n[3][30] = 2.49e-13;
|
|
I_off_n[3][40] = 4.41e-13;
|
|
I_off_n[3][50] = 7.55e-13;
|
|
I_off_n[3][60] = 1.26e-12;
|
|
I_off_n[3][70] = 2.03e-12;
|
|
I_off_n[3][80] = 3.19e-12;
|
|
I_off_n[3][90] = 4.87e-12;
|
|
I_off_n[3][100] = 7.16e-12;
|
|
}
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_cam = 2.92;
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 0.7 * 0.7 * 0.7;
|
|
curr_core_tx_density = 1.25 / 0.7;
|
|
curr_sckt_co_eff = 1.1111;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
}
|
|
|
|
if (tech == 22) {
|
|
SENSE_AMP_D = .03e-9; // s
|
|
SENSE_AMP_P = 2.16e-15; // J
|
|
//For 2016, MPU/ASIC stagger-contacted M1 half-pitch is 22 nm (so this is 22 nm
|
|
//technology i.e. FEATURESIZE = 0.022). Using the DG process numbers for HP.
|
|
//22 nm HP
|
|
vdd[0] = 0.8;
|
|
Lphy[0] = 0.009;//Lphy is the physical gate-length.
|
|
Lelec[0] = 0.00468;//Lelec is the electrical gate-length.
|
|
t_ox[0] = 0.55e-3;//micron
|
|
v_th[0] = 0.1395;//V
|
|
c_ox[0] = 3.63e-14;//F/micron2
|
|
mobility_eff[0] = 426.07 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[0] = 2.33e-2; //V/micron
|
|
c_g_ideal[0] = 3.27e-16;//F/micron
|
|
c_fringe[0] = 0.06e-15;//F/micron
|
|
c_junc[0] = 0;//F/micron2
|
|
I_on_n[0] = 2626.4e-6;//A/micron
|
|
I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
|
|
nmos_effective_resistance_multiplier = 1.45;
|
|
n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
|
|
//"Dynamic" tab of Device workspace.
|
|
gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
|
|
long_channel_leakage_reduction[0] = 1 / 3.274;
|
|
//From 22nm, leakage current are directly from ITRS report rather
|
|
//than MASTAR, since MASTAR has serious bugs there.
|
|
I_off_n[0][0] = 1.52e-7 / 1.5 * 1.2;
|
|
I_off_n[0][10] = 1.55e-7 / 1.5 * 1.2;
|
|
I_off_n[0][20] = 1.59e-7 / 1.5 * 1.2;
|
|
I_off_n[0][30] = 1.68e-7 / 1.5 * 1.2;
|
|
I_off_n[0][40] = 1.90e-7 / 1.5 * 1.2;
|
|
I_off_n[0][50] = 2.69e-7 / 1.5 * 1.2;
|
|
I_off_n[0][60] = 5.32e-7 / 1.5 * 1.2;
|
|
I_off_n[0][70] = 1.02e-6 / 1.5 * 1.2;
|
|
I_off_n[0][80] = 1.62e-6 / 1.5 * 1.2;
|
|
I_off_n[0][90] = 2.73e-6 / 1.5 * 1.2;
|
|
I_off_n[0][100] = 6.1e-6 / 1.5 * 1.2;
|
|
//for 22nm DG HP
|
|
I_g_on_n[0][0] = 1.81e-9;//A/micron
|
|
I_g_on_n[0][10] = 1.81e-9;
|
|
I_g_on_n[0][20] = 1.81e-9;
|
|
I_g_on_n[0][30] = 1.81e-9;
|
|
I_g_on_n[0][40] = 1.81e-9;
|
|
I_g_on_n[0][50] = 1.81e-9;
|
|
I_g_on_n[0][60] = 1.81e-9;
|
|
I_g_on_n[0][70] = 1.81e-9;
|
|
I_g_on_n[0][80] = 1.81e-9;
|
|
I_g_on_n[0][90] = 1.81e-9;
|
|
I_g_on_n[0][100] = 1.81e-9;
|
|
|
|
//22 nm LSTP DG
|
|
vdd[1] = 0.8;
|
|
Lphy[1] = 0.014;
|
|
Lelec[1] = 0.008;//Lelec is the electrical gate-length.
|
|
t_ox[1] = 1.1e-3;//micron
|
|
v_th[1] = 0.40126;//V
|
|
c_ox[1] = 2.30e-14;//F/micron2
|
|
mobility_eff[1] = 738.09 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[1] = 6.64e-2; //V/micron
|
|
c_g_ideal[1] = 3.22e-16;//F/micron
|
|
c_fringe[1] = 0.08e-15;
|
|
c_junc[1] = 0;//F/micron2
|
|
I_on_n[1] = 727.6e-6;//A/micron
|
|
I_on_p[1] = I_on_n[1] / 2;
|
|
nmos_effective_resistance_multiplier = 1.99;
|
|
n_to_p_eff_curr_drv_ratio[1] = 2;
|
|
gmp_to_gmn_multiplier[1] = 0.99;
|
|
Rnchannelon[1] = nmos_effective_resistance_multiplier * vdd[1] / I_on_n[1];//ohm-micron
|
|
Rpchannelon[1] = n_to_p_eff_curr_drv_ratio[1] * Rnchannelon[1];//ohm-micron
|
|
long_channel_leakage_reduction[1] = 1 / 1.89;
|
|
I_off_n[1][0] = 2.43e-11;
|
|
I_off_n[1][10] = 4.85e-11;
|
|
I_off_n[1][20] = 9.68e-11;
|
|
I_off_n[1][30] = 1.94e-10;
|
|
I_off_n[1][40] = 3.87e-10;
|
|
I_off_n[1][50] = 7.73e-10;
|
|
I_off_n[1][60] = 3.55e-10;
|
|
I_off_n[1][70] = 3.09e-9;
|
|
I_off_n[1][80] = 6.19e-9;
|
|
I_off_n[1][90] = 1.24e-8;
|
|
I_off_n[1][100] = 2.48e-8;
|
|
|
|
I_g_on_n[1][0] = 4.51e-10;//A/micron
|
|
I_g_on_n[1][10] = 4.51e-10;
|
|
I_g_on_n[1][20] = 4.51e-10;
|
|
I_g_on_n[1][30] = 4.51e-10;
|
|
I_g_on_n[1][40] = 4.51e-10;
|
|
I_g_on_n[1][50] = 4.51e-10;
|
|
I_g_on_n[1][60] = 4.51e-10;
|
|
I_g_on_n[1][70] = 4.51e-10;
|
|
I_g_on_n[1][80] = 4.51e-10;
|
|
I_g_on_n[1][90] = 4.51e-10;
|
|
I_g_on_n[1][100] = 4.51e-10;
|
|
|
|
//22 nm LOP
|
|
vdd[2] = 0.6;
|
|
Lphy[2] = 0.011;
|
|
Lelec[2] = 0.00604;//Lelec is the electrical gate-length.
|
|
t_ox[2] = 0.8e-3;//micron
|
|
v_th[2] = 0.2315;//V
|
|
c_ox[2] = 2.87e-14;//F/micron2
|
|
mobility_eff[2] = 698.37 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[2] = 1.81e-2; //V/micron
|
|
c_g_ideal[2] = 3.16e-16;//F/micron
|
|
c_fringe[2] = 0.08e-15;
|
|
c_junc[2] = 0;//F/micron2 This is Cj0 not Cjunc in MASTAR results->Dynamic Tab
|
|
I_on_n[2] = 916.1e-6;//A/micron
|
|
I_on_p[2] = I_on_n[2] / 2;
|
|
nmos_effective_resistance_multiplier = 1.73;
|
|
n_to_p_eff_curr_drv_ratio[2] = 2;
|
|
gmp_to_gmn_multiplier[2] = 1.11;
|
|
Rnchannelon[2] = nmos_effective_resistance_multiplier * vdd[2] / I_on_n[2];//ohm-micron
|
|
Rpchannelon[2] = n_to_p_eff_curr_drv_ratio[2] * Rnchannelon[2];//ohm-micron
|
|
long_channel_leakage_reduction[2] = 1 / 2.38;
|
|
|
|
I_off_n[2][0] = 1.31e-8;
|
|
I_off_n[2][10] = 2.60e-8;
|
|
I_off_n[2][20] = 5.14e-8;
|
|
I_off_n[2][30] = 1.02e-7;
|
|
I_off_n[2][40] = 2.02e-7;
|
|
I_off_n[2][50] = 3.99e-7;
|
|
I_off_n[2][60] = 7.91e-7;
|
|
I_off_n[2][70] = 1.09e-6;
|
|
I_off_n[2][80] = 2.09e-6;
|
|
I_off_n[2][90] = 4.04e-6;
|
|
I_off_n[2][100] = 4.48e-6;
|
|
|
|
I_g_on_n[2][0] = 2.74e-9;//A/micron
|
|
I_g_on_n[2][10] = 2.74e-9;
|
|
I_g_on_n[2][20] = 2.74e-9;
|
|
I_g_on_n[2][30] = 2.74e-9;
|
|
I_g_on_n[2][40] = 2.74e-9;
|
|
I_g_on_n[2][50] = 2.74e-9;
|
|
I_g_on_n[2][60] = 2.74e-9;
|
|
I_g_on_n[2][70] = 2.74e-9;
|
|
I_g_on_n[2][80] = 2.74e-9;
|
|
I_g_on_n[2][90] = 2.74e-9;
|
|
I_g_on_n[2][100] = 2.74e-9;
|
|
|
|
|
|
|
|
if (ram_cell_tech_type == 3) {} else if (ram_cell_tech_type == 4) {
|
|
//22 nm commodity DRAM cell access transistor technology parameters.
|
|
//parameters
|
|
curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
|
|
//2005 ITRS, the value was about twice the value in 2007 ITRS
|
|
Lphy[3] = 0.022;//micron
|
|
Lelec[3] = 0.0181;//micron.
|
|
curr_v_th_dram_access_transistor = 1;//V
|
|
width_dram_access_transistor = 0.022;//micron
|
|
curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
|
|
//kept constant. In reality this could perhaps be lower
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.022 * 0.022;//micron2.
|
|
curr_asp_ratio_cell_dram = 0.667;
|
|
curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
|
|
//kept constant.
|
|
|
|
//22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
|
|
curr_vpp = 2.3;//vpp. V
|
|
t_ox[3] = 3.5e-3;//micron
|
|
v_th[3] = 1.0;//V
|
|
c_ox[3] = 9.06e-15;//F/micron2
|
|
mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
|
|
Vdsat[3] = 0.0972; //V/micron
|
|
c_g_ideal[3] = 1.99e-16;//F/micron
|
|
c_fringe[3] = 0.053e-15;//F/micron
|
|
c_junc[3] = 1e-15;//F/micron2
|
|
I_on_n[3] = 910.5e-6;//A/micron
|
|
I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
|
|
nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
|
|
//
|
|
n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 1.1e-13; //A/micron
|
|
I_off_n[3][10] = 2.11e-13;
|
|
I_off_n[3][20] = 3.88e-13;
|
|
I_off_n[3][30] = 6.9e-13;
|
|
I_off_n[3][40] = 1.19e-12;
|
|
I_off_n[3][50] = 1.98e-12;
|
|
I_off_n[3][60] = 3.22e-12;
|
|
I_off_n[3][70] = 5.09e-12;
|
|
I_off_n[3][80] = 7.85e-12;
|
|
I_off_n[3][90] = 1.18e-11;
|
|
I_off_n[3][100] = 1.72e-11;
|
|
|
|
} else {
|
|
//some error handler
|
|
}
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_cam = 2.92;
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 0.7 * 0.7 * 0.7 * 0.7;
|
|
curr_core_tx_density = 1.25 / 0.7 / 0.7;
|
|
curr_sckt_co_eff = 1.1296;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
}
|
|
|
|
if (tech == 16) {
|
|
//For 2019, MPU/ASIC stagger-contacted M1 half-pitch is 16 nm (so this is 16 nm
|
|
//technology i.e. FEATURESIZE = 0.016). Using the DG process numbers for HP.
|
|
//16 nm HP
|
|
vdd[0] = 0.7;
|
|
Lphy[0] = 0.006;//Lphy is the physical gate-length.
|
|
Lelec[0] = 0.00315;//Lelec is the electrical gate-length.
|
|
t_ox[0] = 0.5e-3;//micron
|
|
v_th[0] = 0.1489;//V
|
|
c_ox[0] = 3.83e-14;//F/micron2 Cox_elec in MASTAR
|
|
mobility_eff[0] = 476.15 * (1e-2 * 1e6 * 1e-2 * 1e6); //micron2 / Vs
|
|
Vdsat[0] = 1.42e-2; //V/micron calculated in spreadsheet
|
|
c_g_ideal[0] = 2.30e-16;//F/micron
|
|
c_fringe[0] = 0.06e-15;//F/micron MASTAR inputdynamic/3
|
|
c_junc[0] = 0;//F/micron2 MASTAR result dynamic
|
|
I_on_n[0] = 2768.4e-6;//A/micron
|
|
I_on_p[0] = I_on_n[0] / 2;//A/micron //This value for I_on_p is not really used.
|
|
nmos_effective_resistance_multiplier = 1.48;//nmos_effective_resistance_multiplier is the ratio of Ieff to Idsat where Ieff is the effective NMOS current and Idsat is the saturation current.
|
|
n_to_p_eff_curr_drv_ratio[0] = 2; //Wpmos/Wnmos = 2 in 2007 MASTAR. Look in
|
|
//"Dynamic" tab of Device workspace.
|
|
gmp_to_gmn_multiplier[0] = 1.38; //Just using the 32nm SOI value.
|
|
Rnchannelon[0] = nmos_effective_resistance_multiplier * vdd[0] / I_on_n[0];//ohm-micron
|
|
Rpchannelon[0] = n_to_p_eff_curr_drv_ratio[0] * Rnchannelon[0];//ohm-micron
|
|
long_channel_leakage_reduction[0] = 1 / 2.655;
|
|
I_off_n[0][0] = 1.52e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][10] = 1.55e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][20] = 1.59e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][30] = 1.68e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][40] = 1.90e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][50] = 2.69e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][60] = 5.32e-7 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][70] = 1.02e-6 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][80] = 1.62e-6 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][90] = 2.73e-6 / 1.5 * 1.2 * 1.07;
|
|
I_off_n[0][100] = 6.1e-6 / 1.5 * 1.2 * 1.07;
|
|
//for 16nm DG HP
|
|
I_g_on_n[0][0] = 1.07e-9;//A/micron
|
|
I_g_on_n[0][10] = 1.07e-9;
|
|
I_g_on_n[0][20] = 1.07e-9;
|
|
I_g_on_n[0][30] = 1.07e-9;
|
|
I_g_on_n[0][40] = 1.07e-9;
|
|
I_g_on_n[0][50] = 1.07e-9;
|
|
I_g_on_n[0][60] = 1.07e-9;
|
|
I_g_on_n[0][70] = 1.07e-9;
|
|
I_g_on_n[0][80] = 1.07e-9;
|
|
I_g_on_n[0][90] = 1.07e-9;
|
|
I_g_on_n[0][100] = 1.07e-9;
|
|
|
|
if (ram_cell_tech_type == 3) {} else if (ram_cell_tech_type == 4) {
|
|
//22 nm commodity DRAM cell access transistor technology parameters.
|
|
//parameters
|
|
curr_vdd_dram_cell = 0.9;//0.45;//This value has reduced greatly in 2007 ITRS for all technology nodes. In
|
|
//2005 ITRS, the value was about twice the value in 2007 ITRS
|
|
Lphy[3] = 0.022;//micron
|
|
Lelec[3] = 0.0181;//micron.
|
|
curr_v_th_dram_access_transistor = 1;//V
|
|
width_dram_access_transistor = 0.022;//micron
|
|
curr_I_on_dram_cell = 20e-6; //This is a typical value that I have always
|
|
//kept constant. In reality this could perhaps be lower
|
|
curr_I_off_dram_cell_worst_case_length_temp = 1e-15;//A
|
|
curr_Wmemcella_dram = width_dram_access_transistor;
|
|
curr_Wmemcellpmos_dram = 0;
|
|
curr_Wmemcellnmos_dram = 0;
|
|
curr_area_cell_dram = 6 * 0.022 * 0.022;//micron2.
|
|
curr_asp_ratio_cell_dram = 0.667;
|
|
curr_c_dram_cell = 30e-15;//This is a typical value that I have alwaus
|
|
//kept constant.
|
|
|
|
//22 nm commodity DRAM wordline transistor parameters obtained using MASTAR.
|
|
curr_vpp = 2.3;//vpp. V
|
|
t_ox[3] = 3.5e-3;//micron
|
|
v_th[3] = 1.0;//V
|
|
c_ox[3] = 9.06e-15;//F/micron2
|
|
mobility_eff[3] = 367.29 * (1e-2 * 1e6 * 1e-2 * 1e6);//micron2 / Vs
|
|
Vdsat[3] = 0.0972; //V/micron
|
|
c_g_ideal[3] = 1.99e-16;//F/micron
|
|
c_fringe[3] = 0.053e-15;//F/micron
|
|
c_junc[3] = 1e-15;//F/micron2
|
|
I_on_n[3] = 910.5e-6;//A/micron
|
|
I_on_p[3] = I_on_n[3] / 2;//This value for I_on_p is not really used.
|
|
nmos_effective_resistance_multiplier = 1.69;//Using the value from 32nm.
|
|
//
|
|
n_to_p_eff_curr_drv_ratio[3] = 1.95;//Using the value from 32nm
|
|
gmp_to_gmn_multiplier[3] = 0.90;
|
|
Rnchannelon[3] = nmos_effective_resistance_multiplier * curr_vpp / I_on_n[3];//ohm-micron
|
|
Rpchannelon[3] = n_to_p_eff_curr_drv_ratio[3] * Rnchannelon[3];//ohm-micron
|
|
long_channel_leakage_reduction[3] = 1;
|
|
I_off_n[3][0] = 1.1e-13; //A/micron
|
|
I_off_n[3][10] = 2.11e-13;
|
|
I_off_n[3][20] = 3.88e-13;
|
|
I_off_n[3][30] = 6.9e-13;
|
|
I_off_n[3][40] = 1.19e-12;
|
|
I_off_n[3][50] = 1.98e-12;
|
|
I_off_n[3][60] = 3.22e-12;
|
|
I_off_n[3][70] = 5.09e-12;
|
|
I_off_n[3][80] = 7.85e-12;
|
|
I_off_n[3][90] = 1.18e-11;
|
|
I_off_n[3][100] = 1.72e-11;
|
|
|
|
} else {
|
|
//some error handler
|
|
}
|
|
|
|
//SRAM cell properties
|
|
curr_Wmemcella_sram = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_sram = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_sram = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_sram = 146 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_sram = 1.46;
|
|
//CAM cell properties //TODO: data need to be revisited
|
|
curr_Wmemcella_cam = 1.31 * g_ip->F_sz_um;
|
|
curr_Wmemcellpmos_cam = 1.23 * g_ip->F_sz_um;
|
|
curr_Wmemcellnmos_cam = 2.08 * g_ip->F_sz_um;
|
|
curr_area_cell_cam = 292 * g_ip->F_sz_um * g_ip->F_sz_um;
|
|
curr_asp_ratio_cell_cam = 2.92;
|
|
//Empirical undifferetiated core/FU coefficient
|
|
curr_logic_scaling_co_eff = 0.7 * 0.7 * 0.7 * 0.7 * 0.7;
|
|
curr_core_tx_density = 1.25 / 0.7 / 0.7 / 0.7;
|
|
curr_sckt_co_eff = 1.1296;
|
|
curr_chip_layout_overhead = 1.2;//die measurement results based on Niagara 1 and 2
|
|
curr_macro_layout_overhead = 1.1;//EDA placement and routing tool rule of thumb
|
|
}
|
|
|
|
|
|
g_tp.peri_global.Vdd += curr_alpha * vdd[peri_global_tech_type];
|
|
g_tp.peri_global.t_ox += curr_alpha * t_ox[peri_global_tech_type];
|
|
g_tp.peri_global.Vth += curr_alpha * v_th[peri_global_tech_type];
|
|
g_tp.peri_global.C_ox += curr_alpha * c_ox[peri_global_tech_type];
|
|
g_tp.peri_global.C_g_ideal += curr_alpha * c_g_ideal[peri_global_tech_type];
|
|
g_tp.peri_global.C_fringe += curr_alpha * c_fringe[peri_global_tech_type];
|
|
g_tp.peri_global.C_junc += curr_alpha * c_junc[peri_global_tech_type];
|
|
g_tp.peri_global.C_junc_sidewall = 0.25e-15; // F/micron
|
|
g_tp.peri_global.l_phy += curr_alpha * Lphy[peri_global_tech_type];
|
|
g_tp.peri_global.l_elec += curr_alpha * Lelec[peri_global_tech_type];
|
|
g_tp.peri_global.I_on_n += curr_alpha * I_on_n[peri_global_tech_type];
|
|
g_tp.peri_global.R_nch_on += curr_alpha * Rnchannelon[peri_global_tech_type];
|
|
g_tp.peri_global.R_pch_on += curr_alpha * Rpchannelon[peri_global_tech_type];
|
|
g_tp.peri_global.n_to_p_eff_curr_drv_ratio
|
|
+= curr_alpha * n_to_p_eff_curr_drv_ratio[peri_global_tech_type];
|
|
g_tp.peri_global.long_channel_leakage_reduction
|
|
+= curr_alpha * long_channel_leakage_reduction[peri_global_tech_type];
|
|
g_tp.peri_global.I_off_n += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
|
|
g_tp.peri_global.I_off_p += curr_alpha * I_off_n[peri_global_tech_type][g_ip->temp - 300];
|
|
g_tp.peri_global.I_g_on_n += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
|
|
g_tp.peri_global.I_g_on_p += curr_alpha * I_g_on_n[peri_global_tech_type][g_ip->temp - 300];
|
|
gmp_to_gmn_multiplier_periph_global += curr_alpha * gmp_to_gmn_multiplier[peri_global_tech_type];
|
|
|
|
g_tp.sram_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
|
|
g_tp.sram_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
|
|
g_tp.sram_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
|
|
g_tp.sram_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
|
|
g_tp.sram_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
|
|
g_tp.sram_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
|
|
g_tp.sram_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
|
|
g_tp.sram_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
|
|
g_tp.sram_cell.C_junc_sidewall = 0.25e-15; // F/micron
|
|
g_tp.sram_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
|
|
g_tp.sram_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
|
|
g_tp.sram_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
|
|
g_tp.sram_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
|
|
g_tp.sram_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
|
|
g_tp.sram_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.sram_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.sram_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.sram_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
|
|
g_tp.dram_cell_Vdd += curr_alpha * curr_vdd_dram_cell;
|
|
g_tp.dram_acc.Vth += curr_alpha * curr_v_th_dram_access_transistor;
|
|
g_tp.dram_acc.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
|
|
g_tp.dram_acc.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
|
|
g_tp.dram_acc.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
|
|
g_tp.dram_acc.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
|
|
g_tp.dram_acc.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
|
|
g_tp.dram_acc.C_junc_sidewall = 0.25e-15; // F/micron
|
|
g_tp.dram_cell_I_on += curr_alpha * curr_I_on_dram_cell;
|
|
g_tp.dram_cell_I_off_worst_case_len_temp += curr_alpha * curr_I_off_dram_cell_worst_case_length_temp;
|
|
g_tp.dram_acc.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
|
|
g_tp.dram_cell_C += curr_alpha * curr_c_dram_cell;
|
|
g_tp.vpp += curr_alpha * curr_vpp;
|
|
g_tp.dram_wl.l_phy += curr_alpha * Lphy[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.l_elec += curr_alpha * Lelec[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.C_g_ideal += curr_alpha * c_g_ideal[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.C_fringe += curr_alpha * c_fringe[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.C_junc += curr_alpha * c_junc[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.C_junc_sidewall = 0.25e-15; // F/micron
|
|
g_tp.dram_wl.I_on_n += curr_alpha * I_on_n[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.R_nch_on += curr_alpha * Rnchannelon[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.R_pch_on += curr_alpha * Rpchannelon[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[dram_cell_tech_flavor];
|
|
g_tp.dram_wl.I_off_n += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
|
|
g_tp.dram_wl.I_off_p += curr_alpha * I_off_n[dram_cell_tech_flavor][g_ip->temp - 300];
|
|
|
|
g_tp.cam_cell.Vdd += curr_alpha * vdd[ram_cell_tech_type];
|
|
g_tp.cam_cell.l_phy += curr_alpha * Lphy[ram_cell_tech_type];
|
|
g_tp.cam_cell.l_elec += curr_alpha * Lelec[ram_cell_tech_type];
|
|
g_tp.cam_cell.t_ox += curr_alpha * t_ox[ram_cell_tech_type];
|
|
g_tp.cam_cell.Vth += curr_alpha * v_th[ram_cell_tech_type];
|
|
g_tp.cam_cell.C_g_ideal += curr_alpha * c_g_ideal[ram_cell_tech_type];
|
|
g_tp.cam_cell.C_fringe += curr_alpha * c_fringe[ram_cell_tech_type];
|
|
g_tp.cam_cell.C_junc += curr_alpha * c_junc[ram_cell_tech_type];
|
|
g_tp.cam_cell.C_junc_sidewall = 0.25e-15; // F/micron
|
|
g_tp.cam_cell.I_on_n += curr_alpha * I_on_n[ram_cell_tech_type];
|
|
g_tp.cam_cell.R_nch_on += curr_alpha * Rnchannelon[ram_cell_tech_type];
|
|
g_tp.cam_cell.R_pch_on += curr_alpha * Rpchannelon[ram_cell_tech_type];
|
|
g_tp.cam_cell.n_to_p_eff_curr_drv_ratio += curr_alpha * n_to_p_eff_curr_drv_ratio[ram_cell_tech_type];
|
|
g_tp.cam_cell.long_channel_leakage_reduction += curr_alpha * long_channel_leakage_reduction[ram_cell_tech_type];
|
|
g_tp.cam_cell.I_off_n += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.cam_cell.I_off_p += curr_alpha * I_off_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.cam_cell.I_g_on_n += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
g_tp.cam_cell.I_g_on_p += curr_alpha * I_g_on_n[ram_cell_tech_type][g_ip->temp - 300];
|
|
|
|
g_tp.dram.cell_a_w += curr_alpha * curr_Wmemcella_dram;
|
|
g_tp.dram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_dram;
|
|
g_tp.dram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_dram;
|
|
area_cell_dram += curr_alpha * curr_area_cell_dram;
|
|
asp_ratio_cell_dram += curr_alpha * curr_asp_ratio_cell_dram;
|
|
|
|
g_tp.sram.cell_a_w += curr_alpha * curr_Wmemcella_sram;
|
|
g_tp.sram.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_sram;
|
|
g_tp.sram.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_sram;
|
|
area_cell_sram += curr_alpha * curr_area_cell_sram;
|
|
asp_ratio_cell_sram += curr_alpha * curr_asp_ratio_cell_sram;
|
|
|
|
g_tp.cam.cell_a_w += curr_alpha * curr_Wmemcella_cam;//sheng
|
|
g_tp.cam.cell_pmos_w += curr_alpha * curr_Wmemcellpmos_cam;
|
|
g_tp.cam.cell_nmos_w += curr_alpha * curr_Wmemcellnmos_cam;
|
|
area_cell_cam += curr_alpha * curr_area_cell_cam;
|
|
asp_ratio_cell_cam += curr_alpha * curr_asp_ratio_cell_cam;
|
|
|
|
//Sense amplifier latch Gm calculation
|
|
mobility_eff_periph_global += curr_alpha * mobility_eff[peri_global_tech_type];
|
|
Vdsat_periph_global += curr_alpha * Vdsat[peri_global_tech_type];
|
|
|
|
//Empirical undifferetiated core/FU coefficient
|
|
g_tp.scaling_factor.logic_scaling_co_eff += curr_alpha * curr_logic_scaling_co_eff;
|
|
g_tp.scaling_factor.core_tx_density += curr_alpha * curr_core_tx_density;
|
|
g_tp.chip_layout_overhead += curr_alpha * curr_chip_layout_overhead;
|
|
g_tp.macro_layout_overhead += curr_alpha * curr_macro_layout_overhead;
|
|
g_tp.sckt_co_eff += curr_alpha * curr_sckt_co_eff;
|
|
}
|
|
|
|
|
|
//Currently we are not modeling the resistance/capacitance of poly anywhere.
|
|
//Continuous function (or date have been processed) does not need linear interpolation
|
|
g_tp.w_comp_inv_p1 = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
|
|
g_tp.w_comp_inv_n1 = 7.5 * g_ip->F_sz_um;//this was 6 micron for the 0.8 micron process
|
|
g_tp.w_comp_inv_p2 = 25 * g_ip->F_sz_um;//this was 20 micron for the 0.8 micron process
|
|
g_tp.w_comp_inv_n2 = 15 * g_ip->F_sz_um;//this was 12 micron for the 0.8 micron process
|
|
g_tp.w_comp_inv_p3 = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
|
|
g_tp.w_comp_inv_n3 = 30 * g_ip->F_sz_um;//this was 24 micron for the 0.8 micron process
|
|
g_tp.w_eval_inv_p = 100 * g_ip->F_sz_um;//this was 80 micron for the 0.8 micron process
|
|
g_tp.w_eval_inv_n = 50 * g_ip->F_sz_um;//this was 40 micron for the 0.8 micron process
|
|
g_tp.w_comp_n = 12.5 * g_ip->F_sz_um;//this was 10 micron for the 0.8 micron process
|
|
g_tp.w_comp_p = 37.5 * g_ip->F_sz_um;//this was 30 micron for the 0.8 micron process
|
|
|
|
g_tp.MIN_GAP_BET_P_AND_N_DIFFS = 5 * g_ip->F_sz_um;
|
|
g_tp.MIN_GAP_BET_SAME_TYPE_DIFFS = 1.5 * g_ip->F_sz_um;
|
|
g_tp.HPOWERRAIL = 2 * g_ip->F_sz_um;
|
|
g_tp.cell_h_def = 50 * g_ip->F_sz_um;
|
|
g_tp.w_poly_contact = g_ip->F_sz_um;
|
|
g_tp.spacing_poly_to_contact = g_ip->F_sz_um;
|
|
g_tp.spacing_poly_to_poly = 1.5 * g_ip->F_sz_um;
|
|
g_tp.ram_wl_stitching_overhead_ = 7.5 * g_ip->F_sz_um;
|
|
|
|
g_tp.min_w_nmos_ = 3 * g_ip->F_sz_um / 2;
|
|
g_tp.max_w_nmos_ = 100 * g_ip->F_sz_um;
|
|
//was 10 micron for the 0.8 micron process
|
|
g_tp.w_iso = 12.5 * g_ip->F_sz_um;
|
|
// sense amplifier N-trans; was 3 micron for the 0.8 micron process
|
|
g_tp.w_sense_n = 3.75 * g_ip->F_sz_um;
|
|
// sense amplifier P-trans; was 6 micron for the 0.8 micron process
|
|
g_tp.w_sense_p = 7.5 * g_ip->F_sz_um;
|
|
// Sense enable transistor of the sense amplifier; was 4 micron for the
|
|
//0.8 micron process
|
|
g_tp.w_sense_en = 5 * g_ip->F_sz_um;
|
|
g_tp.w_nmos_b_mux = 6 * g_tp.min_w_nmos_;
|
|
g_tp.w_nmos_sa_mux= 6 * g_tp.min_w_nmos_;
|
|
|
|
if (ram_cell_tech_type == comm_dram) {
|
|
g_tp.max_w_nmos_dec = 8 * g_ip->F_sz_um;
|
|
g_tp.h_dec = 8; // in the unit of memory cell height
|
|
} else {
|
|
g_tp.max_w_nmos_dec = g_tp.max_w_nmos_;
|
|
g_tp.h_dec = 4; // in the unit of memory cell height
|
|
}
|
|
|
|
g_tp.peri_global.C_overlap = 0.2 * g_tp.peri_global.C_g_ideal;
|
|
g_tp.sram_cell.C_overlap = 0.2 * g_tp.sram_cell.C_g_ideal;
|
|
g_tp.cam_cell.C_overlap = 0.2 * g_tp.cam_cell.C_g_ideal;
|
|
|
|
g_tp.dram_acc.C_overlap = 0.2 * g_tp.dram_acc.C_g_ideal;
|
|
g_tp.dram_acc.R_nch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_n;
|
|
//g_tp.dram_acc.R_pch_on = g_tp.dram_cell_Vdd / g_tp.dram_acc.I_on_p;
|
|
|
|
g_tp.dram_wl.C_overlap = 0.2 * g_tp.dram_wl.C_g_ideal;
|
|
|
|
double gmn_sense_amp_latch = (mobility_eff_periph_global / 2) * g_tp.peri_global.C_ox * (g_tp.w_sense_n / g_tp.peri_global.l_elec) * Vdsat_periph_global;
|
|
double gmp_sense_amp_latch = gmp_to_gmn_multiplier_periph_global * gmn_sense_amp_latch;
|
|
g_tp.gm_sense_amp_latch = gmn_sense_amp_latch + gmp_sense_amp_latch;
|
|
|
|
g_tp.dram.b_w = sqrt(area_cell_dram / (asp_ratio_cell_dram));
|
|
g_tp.dram.b_h = asp_ratio_cell_dram * g_tp.dram.b_w;
|
|
g_tp.sram.b_w = sqrt(area_cell_sram / (asp_ratio_cell_sram));
|
|
g_tp.sram.b_h = asp_ratio_cell_sram * g_tp.sram.b_w;
|
|
g_tp.cam.b_w = sqrt(area_cell_cam / (asp_ratio_cell_cam));//Sheng
|
|
g_tp.cam.b_h = asp_ratio_cell_cam * g_tp.cam.b_w;
|
|
|
|
g_tp.dram.Vbitpre = g_tp.dram_cell_Vdd;
|
|
g_tp.sram.Vbitpre = vdd[ram_cell_tech_type];
|
|
g_tp.cam.Vbitpre = vdd[ram_cell_tech_type];//Sheng
|
|
pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio();
|
|
g_tp.w_pmos_bl_precharge = 6 * pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
|
|
g_tp.w_pmos_bl_eq = pmos_to_nmos_sizing_r * g_tp.min_w_nmos_;
|
|
|
|
|
|
double wire_pitch [NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
wire_r_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
wire_c_per_micron[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
horiz_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
vert_dielectric_constant[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
aspect_ratio[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
miller_value[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES],
|
|
ild_thickness[NUMBER_INTERCONNECT_PROJECTION_TYPES][NUMBER_WIRE_TYPES];
|
|
|
|
for (iter = 0; iter <= 1; ++iter) {
|
|
// linear interpolation
|
|
if (iter == 0) {
|
|
tech = tech_lo;
|
|
if (tech_lo == tech_hi) {
|
|
curr_alpha = 1;
|
|
} else {
|
|
curr_alpha = (technology - tech_hi) / (tech_lo - tech_hi);
|
|
}
|
|
} else {
|
|
tech = tech_hi;
|
|
if (tech_lo == tech_hi) {
|
|
break;
|
|
} else {
|
|
curr_alpha = (tech_lo - technology) / (tech_lo - tech_hi);
|
|
}
|
|
}
|
|
|
|
if (tech == 180) {
|
|
//Aggressive projections
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//micron
|
|
aspect_ratio[0][0] = 2.0;
|
|
wire_width = wire_pitch[0][0] / 2; //micron
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;//micron
|
|
wire_spacing = wire_pitch[0][0] - wire_width;//micron
|
|
barrier_thickness = 0.017;//micron
|
|
dishing_thickness = 0;//micron
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);//ohm/micron
|
|
ild_thickness[0][0] = 0.75;//micron
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 2.709;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15; //F/micron
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0],
|
|
vert_dielectric_constant[0][0],
|
|
fringe_cap);//F/micron.
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 2.4;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.75;//micron
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 2.709;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
fringe_cap = 0.115e-15; //F/micron
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
|
|
vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[0][2] = 2.2;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 1.5;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 2.709;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.017;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.75;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 3.038;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0],
|
|
vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.75;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 3.038;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1],
|
|
vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 1.98;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 3.038;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2] , miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.18;
|
|
wire_c_per_micron[1][3] = 60e-15 / (256 * 2 * 0.18);
|
|
wire_r_per_micron[1][3] = 12 / 0.18;
|
|
} else if (tech == 90) {
|
|
//Aggressive projections
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//micron
|
|
aspect_ratio[0][0] = 2.4;
|
|
wire_width = wire_pitch[0][0] / 2; //micron
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;//micron
|
|
wire_spacing = wire_pitch[0][0] - wire_width;//micron
|
|
barrier_thickness = 0.01;//micron
|
|
dishing_thickness = 0;//micron
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);//ohm/micron
|
|
ild_thickness[0][0] = 0.48;//micron
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 2.709;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15; //F/micron
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0],
|
|
vert_dielectric_constant[0][0],
|
|
fringe_cap);//F/micron.
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 2.4;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.48;//micron
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 2.709;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
|
|
vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[0][2] = 2.7;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.96;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 2.709;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.008;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.48;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 3.038;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0],
|
|
vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.48;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 3.038;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1],
|
|
vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 1.1;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 3.038;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2] , miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.09;
|
|
wire_c_per_micron[1][3] = 60e-15 / (256 * 2 * 0.09);
|
|
wire_r_per_micron[1][3] = 12 / 0.09;
|
|
} else if (tech == 65) {
|
|
//Aggressive projections
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[0][0] = 2.7;
|
|
wire_width = wire_pitch[0][0] / 2;
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;
|
|
wire_spacing = wire_pitch[0][0] - wire_width;
|
|
barrier_thickness = 0;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][0] = 0.405;
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 2.303;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 2.7;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.405;
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 2.303;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1],
|
|
vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[0][2] = 2.8;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.81;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 2.303;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.006;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.405;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 2.734;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.405;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 2.734;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 0.77;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 2.734;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.065;
|
|
wire_c_per_micron[1][3] = 52.5e-15 / (256 * 2 * 0.065);
|
|
wire_r_per_micron[1][3] = 12 / 0.065;
|
|
} else if (tech == 45) {
|
|
//Aggressive projections.
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[0][0] = 3.0;
|
|
wire_width = wire_pitch[0][0] / 2;
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;
|
|
wire_spacing = wire_pitch[0][0] - wire_width;
|
|
barrier_thickness = 0;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][0] = 0.315;
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 1.958;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0] , miller_value[0][0] , horiz_dielectric_constant[0][0] , vert_dielectric_constant[0][0] ,
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 3.0;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.315;
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 1.958;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[0][2] = 3.0;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.63;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 1.958;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.004;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.315;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 2.46;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.315;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 2.46;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 0.55;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 2.46;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.045;
|
|
wire_c_per_micron[1][3] = 37.5e-15 / (256 * 2 * 0.045);
|
|
wire_r_per_micron[1][3] = 12 / 0.045;
|
|
} else if (tech == 32) {
|
|
//Aggressive projections.
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[0][0] = 3.0;
|
|
wire_width = wire_pitch[0][0] / 2;
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;
|
|
wire_spacing = wire_pitch[0][0] - wire_width;
|
|
barrier_thickness = 0;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][0] = 0.21;
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 1.664;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 3.0;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.21;
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 1.664;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[0][2] = 3.0;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.42;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 1.664;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.003;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.21;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 2.214;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.21;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 2.214;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 0.385;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 2.214;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.032;//micron
|
|
wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.032);//F/micron
|
|
wire_r_per_micron[1][3] = 12 / 0.032;//ohm/micron
|
|
} else if (tech == 22) {
|
|
//Aggressive projections.
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
|
|
aspect_ratio[0][0] = 3.0;
|
|
wire_width = wire_pitch[0][0] / 2;
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;
|
|
wire_spacing = wire_pitch[0][0] - wire_width;
|
|
barrier_thickness = 0;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][0] = 0.15;
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 1.414;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
aspect_ratio[0][1] = 3.0;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.15;
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 1.414;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
|
|
aspect_ratio[0][2] = 3.0;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.3;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 1.414;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.003;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1.05;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.15;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 2.104;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.15;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 2.104;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 0.275;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 2.104;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.022;//micron
|
|
wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.022);//F/micron
|
|
wire_r_per_micron[1][3] = 12 / 0.022;//ohm/micron
|
|
}
|
|
|
|
else if (tech == 16) {
|
|
//Aggressive projections.
|
|
wire_pitch[0][0] = 2.5 * g_ip->F_sz_um;//local
|
|
aspect_ratio[0][0] = 3.0;
|
|
wire_width = wire_pitch[0][0] / 2;
|
|
wire_thickness = aspect_ratio[0][0] * wire_width;
|
|
wire_spacing = wire_pitch[0][0] - wire_width;
|
|
barrier_thickness = 0;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1;
|
|
wire_r_per_micron[0][0] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][0] = 0.108;
|
|
miller_value[0][0] = 1.5;
|
|
horiz_dielectric_constant[0][0] = 1.202;
|
|
vert_dielectric_constant[0][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[0][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][0], miller_value[0][0], horiz_dielectric_constant[0][0], vert_dielectric_constant[0][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][1] = 4 * g_ip->F_sz_um;//semi-global
|
|
aspect_ratio[0][1] = 3.0;
|
|
wire_width = wire_pitch[0][1] / 2;
|
|
wire_thickness = aspect_ratio[0][1] * wire_width;
|
|
wire_spacing = wire_pitch[0][1] - wire_width;
|
|
wire_r_per_micron[0][1] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][1] = 0.108;
|
|
miller_value[0][1] = 1.5;
|
|
horiz_dielectric_constant[0][1] = 1.202;
|
|
vert_dielectric_constant[0][1] = 3.9;
|
|
wire_c_per_micron[0][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][1], miller_value[0][1], horiz_dielectric_constant[0][1], vert_dielectric_constant[0][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[0][2] = 8 * g_ip->F_sz_um;//global
|
|
aspect_ratio[0][2] = 3.0;
|
|
wire_width = wire_pitch[0][2] / 2;
|
|
wire_thickness = aspect_ratio[0][2] * wire_width;
|
|
wire_spacing = wire_pitch[0][2] - wire_width;
|
|
wire_r_per_micron[0][2] = wire_resistance(BULK_CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[0][2] = 0.216;
|
|
miller_value[0][2] = 1.5;
|
|
horiz_dielectric_constant[0][2] = 1.202;
|
|
vert_dielectric_constant[0][2] = 3.9;
|
|
wire_c_per_micron[0][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[0][2], miller_value[0][2], horiz_dielectric_constant[0][2], vert_dielectric_constant[0][2],
|
|
fringe_cap);
|
|
|
|
//Conservative projections
|
|
wire_pitch[1][0] = 2.5 * g_ip->F_sz_um;
|
|
aspect_ratio[1][0] = 2.0;
|
|
wire_width = wire_pitch[1][0] / 2;
|
|
wire_thickness = aspect_ratio[1][0] * wire_width;
|
|
wire_spacing = wire_pitch[1][0] - wire_width;
|
|
barrier_thickness = 0.002;
|
|
dishing_thickness = 0;
|
|
alpha_scatter = 1.05;
|
|
wire_r_per_micron[1][0] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][0] = 0.108;
|
|
miller_value[1][0] = 1.5;
|
|
horiz_dielectric_constant[1][0] = 1.998;
|
|
vert_dielectric_constant[1][0] = 3.9;
|
|
fringe_cap = 0.115e-15;
|
|
wire_c_per_micron[1][0] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][0], miller_value[1][0], horiz_dielectric_constant[1][0], vert_dielectric_constant[1][0],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][1] = 4 * g_ip->F_sz_um;
|
|
wire_width = wire_pitch[1][1] / 2;
|
|
aspect_ratio[1][1] = 2.0;
|
|
wire_thickness = aspect_ratio[1][1] * wire_width;
|
|
wire_spacing = wire_pitch[1][1] - wire_width;
|
|
wire_r_per_micron[1][1] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][1] = 0.108;
|
|
miller_value[1][1] = 1.5;
|
|
horiz_dielectric_constant[1][1] = 1.998;
|
|
vert_dielectric_constant[1][1] = 3.9;
|
|
wire_c_per_micron[1][1] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][1], miller_value[1][1], horiz_dielectric_constant[1][1], vert_dielectric_constant[1][1],
|
|
fringe_cap);
|
|
|
|
wire_pitch[1][2] = 8 * g_ip->F_sz_um;
|
|
aspect_ratio[1][2] = 2.2;
|
|
wire_width = wire_pitch[1][2] / 2;
|
|
wire_thickness = aspect_ratio[1][2] * wire_width;
|
|
wire_spacing = wire_pitch[1][2] - wire_width;
|
|
dishing_thickness = 0.1 * wire_thickness;
|
|
wire_r_per_micron[1][2] = wire_resistance(CU_RESISTIVITY, wire_width,
|
|
wire_thickness, barrier_thickness, dishing_thickness, alpha_scatter);
|
|
ild_thickness[1][2] = 0.198;
|
|
miller_value[1][2] = 1.5;
|
|
horiz_dielectric_constant[1][2] = 1.998;
|
|
vert_dielectric_constant[1][2] = 3.9;
|
|
wire_c_per_micron[1][2] = wire_capacitance(wire_width, wire_thickness, wire_spacing,
|
|
ild_thickness[1][2], miller_value[1][2], horiz_dielectric_constant[1][2], vert_dielectric_constant[1][2],
|
|
fringe_cap);
|
|
//Nominal projections for commodity DRAM wordline/bitline
|
|
wire_pitch[1][3] = 2 * 0.016;//micron
|
|
wire_c_per_micron[1][3] = 31e-15 / (256 * 2 * 0.016);//F/micron
|
|
wire_r_per_micron[1][3] = 12 / 0.016;//ohm/micron
|
|
}
|
|
g_tp.wire_local.pitch += curr_alpha *
|
|
wire_pitch[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.R_per_um += curr_alpha *
|
|
wire_r_per_micron[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.C_per_um += curr_alpha *
|
|
wire_c_per_micron[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.aspect_ratio += curr_alpha *
|
|
aspect_ratio[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.ild_thickness += curr_alpha *
|
|
ild_thickness[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.miller_value += curr_alpha *
|
|
miller_value[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.horiz_dielectric_constant += curr_alpha *
|
|
horiz_dielectric_constant[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
g_tp.wire_local.vert_dielectric_constant += curr_alpha *
|
|
vert_dielectric_constant[g_ip->ic_proj_type]
|
|
[(ram_cell_tech_type == comm_dram) ? 3 : 0];
|
|
|
|
g_tp.wire_inside_mat.pitch += curr_alpha *
|
|
wire_pitch[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.R_per_um += curr_alpha *
|
|
wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.C_per_um += curr_alpha *
|
|
wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.aspect_ratio += curr_alpha *
|
|
aspect_ratio[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.ild_thickness += curr_alpha *
|
|
ild_thickness[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.miller_value += curr_alpha *
|
|
miller_value[g_ip->ic_proj_type][g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.horiz_dielectric_constant += curr_alpha *
|
|
horiz_dielectric_constant[g_ip->ic_proj_type]
|
|
[g_ip->wire_is_mat_type];
|
|
g_tp.wire_inside_mat.vert_dielectric_constant += curr_alpha *
|
|
vert_dielectric_constant [g_ip->ic_proj_type]
|
|
[g_ip->wire_is_mat_type];
|
|
|
|
g_tp.wire_outside_mat.pitch += curr_alpha *
|
|
wire_pitch[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.R_per_um += curr_alpha *
|
|
wire_r_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.C_per_um += curr_alpha *
|
|
wire_c_per_micron[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.aspect_ratio += curr_alpha *
|
|
aspect_ratio[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.ild_thickness += curr_alpha *
|
|
ild_thickness[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.miller_value += curr_alpha *
|
|
miller_value[g_ip->ic_proj_type][g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.horiz_dielectric_constant += curr_alpha *
|
|
horiz_dielectric_constant[g_ip->ic_proj_type]
|
|
[g_ip->wire_os_mat_type];
|
|
g_tp.wire_outside_mat.vert_dielectric_constant += curr_alpha *
|
|
vert_dielectric_constant [g_ip->ic_proj_type]
|
|
[g_ip->wire_os_mat_type];
|
|
|
|
g_tp.unit_len_wire_del = g_tp.wire_inside_mat.R_per_um *
|
|
g_tp.wire_inside_mat.C_per_um / 2;
|
|
|
|
g_tp.sense_delay += curr_alpha * SENSE_AMP_D;
|
|
g_tp.sense_dy_power += curr_alpha * SENSE_AMP_P;
|
|
|
|
}
|
|
g_tp.fringe_cap = fringe_cap;
|
|
|
|
double rd = tr_R_on(g_tp.min_w_nmos_, NCH, 1);
|
|
double p_to_n_sizing_r = pmos_to_nmos_sz_ratio();
|
|
double c_load = gate_C(g_tp.min_w_nmos_ * (1 + p_to_n_sizing_r), 0.0);
|
|
double tf = rd * c_load;
|
|
g_tp.kinv = horowitz(0, tf, 0.5, 0.5, RISE);
|
|
double KLOAD = 1;
|
|
c_load = KLOAD * (drain_C_(g_tp.min_w_nmos_, NCH, 1, 1, g_tp.cell_h_def) +
|
|
drain_C_(g_tp.min_w_nmos_ * p_to_n_sizing_r, PCH, 1, 1, g_tp.cell_h_def) +
|
|
gate_C(g_tp.min_w_nmos_ * 4 * (1 + p_to_n_sizing_r), 0.0));
|
|
tf = rd * c_load;
|
|
g_tp.FO4 = horowitz(0, tf, 0.5, 0.5, RISE);
|
|
}
|
|
|