0deef376d9
This patch includes software engineering changes and some generic bug fixes Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known issues/concernts we did not have a chance to address in this patch. High-level changes in this patch include: 1) Making XML parsing modular and hierarchical: - Shift parsing responsibility into the components - Read XML in a (mostly) context-free recursive manner so that McPAT input files can contain arbitrary component hierarchies 2) Making power, energy, and area calculations a hierarchical and recursive process - Components track their subcomponents and recursively call compute functions in stages - Make C++ object hierarchy reflect inheritance of classes of components with similar structures - Simplify computeArea() and computeEnergy() functions to eliminate successive calls to calculate separate TDP vs. runtime energy - Remove Processor component (now unnecessary) and introduce a more abstract System component 3) Standardizing McPAT output across all components - Use a single, common data structure for storing and printing McPAT output - Recursively call print functions through component hierarchy 4) For caches, allow splitting data array and tag array reads and writes for better accuracy 5) Improving the usability of CACTI by printing more helpful warning and error messages 6) Minor: Impose more rigorous code style for clarity (more work still to be done) Overall, these changes greatly reduce the amount of replicated code, and they improve McPAT runtime and decrease memory footprint.
315 lines
11 KiB
C++
315 lines
11 KiB
C++
/*****************************************************************************
|
|
* McPAT/CACTI
|
|
* SOFTWARE LICENSE AGREEMENT
|
|
* Copyright 2012 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
|
|
* All Rights Reserved
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
#include "router.h"
|
|
|
|
Router::Router(
|
|
double flit_size_,
|
|
double vc_buf, /* vc size = vc_buffer_size * flit_size */
|
|
double vc_c,
|
|
TechnologyParameter::DeviceType *dt,
|
|
double I_,
|
|
double O_,
|
|
double M_
|
|
): flit_size(flit_size_),
|
|
deviceType(dt),
|
|
I(I_),
|
|
O(O_),
|
|
M(M_) {
|
|
vc_buffer_size = vc_buf;
|
|
vc_count = vc_c;
|
|
min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * g_tp.min_w_nmos_;
|
|
double technology = g_ip->F_sz_um;
|
|
|
|
Vdd = dt->Vdd;
|
|
|
|
/*Crossbar parameters. Transmisson gate is employed for connector*/
|
|
NTtr = 10 * technology * 1e-6 / 2; /*Transmission gate's nmos tr. length*/
|
|
PTtr = 20 * technology * 1e-6 / 2; /* pmos tr. length*/
|
|
wt = 15 * technology * 1e-6 / 2; /*track width*/
|
|
ht = 15 * technology * 1e-6 / 2; /*track height*/
|
|
// I = 5; /*Number of crossbar input ports*/
|
|
// O = 5; /*Number of crossbar output ports*/
|
|
NTi = 12.5 * technology * 1e-6 / 2;
|
|
PTi = 25 * technology * 1e-6 / 2;
|
|
|
|
NTid = 60 * technology * 1e-6 / 2; //m
|
|
PTid = 120 * technology * 1e-6 / 2; // m
|
|
NTod = 60 * technology * 1e-6 / 2; // m
|
|
PTod = 120 * technology * 1e-6 / 2; // m
|
|
|
|
calc_router_parameters();
|
|
}
|
|
|
|
Router::~Router() {}
|
|
|
|
|
|
double //wire cap with triple spacing
|
|
Router::Cw3(double length) {
|
|
Wire wc(g_ip->wt, length, 1, 3, 3);
|
|
return (wc.wire_cap(length));
|
|
}
|
|
|
|
/*Function to calculate the gate capacitance*/
|
|
double
|
|
Router::gate_cap(double w) {
|
|
return (double) gate_C (w*1e6 /*u*/, 0);
|
|
}
|
|
|
|
/*Function to calculate the diffusion capacitance*/
|
|
double
|
|
Router::diff_cap(double w, int type /*0 for n-mos and 1 for p-mos*/,
|
|
double s /*number of stacking transistors*/) {
|
|
return (double) drain_C_(w*1e6 /*u*/, type, (int) s, 1, g_tp.cell_h_def);
|
|
}
|
|
|
|
|
|
/*crossbar related functions */
|
|
|
|
// Model for simple transmission gate
|
|
double
|
|
Router::transmission_buf_inpcap() {
|
|
return diff_cap(NTtr, 0, 1) + diff_cap(PTtr, 1, 1);
|
|
}
|
|
|
|
double
|
|
Router::transmission_buf_outcap() {
|
|
return diff_cap(NTtr, 0, 1) + diff_cap(PTtr, 1, 1);
|
|
}
|
|
|
|
double
|
|
Router::transmission_buf_ctrcap() {
|
|
return gate_cap(NTtr) + gate_cap(PTtr);
|
|
}
|
|
|
|
double
|
|
Router::crossbar_inpline() {
|
|
return (Cw3(O*flit_size*wt) + O*transmission_buf_inpcap() + gate_cap(NTid) +
|
|
gate_cap(PTid) + diff_cap(NTid, 0, 1) + diff_cap(PTid, 1, 1));
|
|
}
|
|
|
|
double
|
|
Router::crossbar_outline() {
|
|
return (Cw3(I*flit_size*ht) + I*transmission_buf_outcap() + gate_cap(NTod) +
|
|
gate_cap(PTod) + diff_cap(NTod, 0, 1) + diff_cap(PTod, 1, 1));
|
|
}
|
|
|
|
double
|
|
Router::crossbar_ctrline() {
|
|
return (Cw3(0.5*O*flit_size*wt) + flit_size*transmission_buf_ctrcap() +
|
|
diff_cap(NTi, 0, 1) + diff_cap(PTi, 1, 1) +
|
|
gate_cap(NTi) + gate_cap(PTi));
|
|
}
|
|
|
|
double
|
|
Router::tr_crossbar_power() {
|
|
return (crossbar_inpline()*Vdd*Vdd*flit_size / 2 +
|
|
crossbar_outline()*Vdd*Vdd*flit_size / 2) * 2;
|
|
}
|
|
|
|
void Router::buffer_stats() {
|
|
DynamicParameter dyn_p;
|
|
dyn_p.is_tag = false;
|
|
dyn_p.pure_cam = false;
|
|
dyn_p.fully_assoc = false;
|
|
dyn_p.pure_ram = true;
|
|
dyn_p.is_dram = false;
|
|
dyn_p.is_main_mem = false;
|
|
dyn_p.num_subarrays = 1;
|
|
dyn_p.num_mats = 1;
|
|
dyn_p.Ndbl = 1;
|
|
dyn_p.Ndwl = 1;
|
|
dyn_p.Nspd = 1;
|
|
dyn_p.deg_bl_muxing = 1;
|
|
dyn_p.deg_senseamp_muxing_non_associativity = 1;
|
|
dyn_p.Ndsam_lev_1 = 1;
|
|
dyn_p.Ndsam_lev_2 = 1;
|
|
dyn_p.Ndcm = 1;
|
|
dyn_p.number_addr_bits_mat = 8;
|
|
dyn_p.number_way_select_signals_mat = 1;
|
|
dyn_p.number_subbanks_decode = 0;
|
|
dyn_p.num_act_mats_hor_dir = 1;
|
|
dyn_p.V_b_sense = Vdd; // FIXME check power calc.
|
|
dyn_p.ram_cell_tech_type = 0;
|
|
dyn_p.num_r_subarray = (int) vc_buffer_size;
|
|
dyn_p.num_c_subarray = (int) flit_size * (int) vc_count;
|
|
dyn_p.num_mats_h_dir = 1;
|
|
dyn_p.num_mats_v_dir = 1;
|
|
dyn_p.num_do_b_subbank = (int)flit_size;
|
|
dyn_p.num_di_b_subbank = (int)flit_size;
|
|
dyn_p.num_do_b_mat = (int) flit_size;
|
|
dyn_p.num_di_b_mat = (int) flit_size;
|
|
dyn_p.num_do_b_mat = (int) flit_size;
|
|
dyn_p.num_di_b_mat = (int) flit_size;
|
|
dyn_p.num_do_b_bank_per_port = (int) flit_size;
|
|
dyn_p.num_di_b_bank_per_port = (int) flit_size;
|
|
dyn_p.out_w = (int) flit_size;
|
|
|
|
dyn_p.use_inp_params = 1;
|
|
dyn_p.num_wr_ports = (unsigned int) vc_count;
|
|
dyn_p.num_rd_ports = 1;//(unsigned int) vc_count;//based on Bill Dally's book
|
|
dyn_p.num_rw_ports = 0;
|
|
dyn_p.num_se_rd_ports = 0;
|
|
dyn_p.num_search_ports = 0;
|
|
|
|
|
|
|
|
dyn_p.cell.h = g_tp.sram.b_h + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_wr_ports +
|
|
dyn_p.num_rw_ports - 1 + dyn_p.num_rd_ports);
|
|
dyn_p.cell.w = g_tp.sram.b_w + 2 * g_tp.wire_outside_mat.pitch * (dyn_p.num_rw_ports - 1 +
|
|
(dyn_p.num_rd_ports - dyn_p.num_se_rd_ports) +
|
|
dyn_p.num_wr_ports) + g_tp.wire_outside_mat.pitch * dyn_p.num_se_rd_ports;
|
|
|
|
Mat buff(dyn_p);
|
|
buff.compute_delays(0);
|
|
buff.compute_power_energy();
|
|
buffer.power.readOp = buff.power.readOp;
|
|
buffer.power.writeOp = buffer.power.readOp; //FIXME
|
|
buffer.area = buff.area;
|
|
}
|
|
|
|
|
|
|
|
void
|
|
Router::cb_stats () {
|
|
if (1) {
|
|
Crossbar c_b(I, O, flit_size);
|
|
c_b.compute_power();
|
|
crossbar.delay = c_b.delay;
|
|
crossbar.power.readOp.dynamic = c_b.power.readOp.dynamic;
|
|
crossbar.power.readOp.leakage = c_b.power.readOp.leakage;
|
|
crossbar.power.readOp.gate_leakage = c_b.power.readOp.gate_leakage;
|
|
crossbar.area = c_b.area;
|
|
// c_b.print_crossbar();
|
|
} else {
|
|
crossbar.power.readOp.dynamic = tr_crossbar_power();
|
|
crossbar.power.readOp.leakage = flit_size * I * O *
|
|
cmos_Isub_leakage(NTtr * g_tp.min_w_nmos_, PTtr * min_w_pmos, 1, tg);
|
|
crossbar.power.readOp.gate_leakage = flit_size * I * O *
|
|
cmos_Ig_leakage(NTtr * g_tp.min_w_nmos_, PTtr * min_w_pmos, 1, tg);
|
|
}
|
|
}
|
|
|
|
void
|
|
Router::get_router_power() {
|
|
/* calculate buffer stats */
|
|
buffer_stats();
|
|
|
|
/* calculate cross-bar stats */
|
|
cb_stats();
|
|
|
|
/* calculate arbiter stats */
|
|
Arbiter vcarb(vc_count, flit_size, buffer.area.w);
|
|
Arbiter cbarb(I, flit_size, crossbar.area.w);
|
|
vcarb.compute_power();
|
|
cbarb.compute_power();
|
|
arbiter.power.readOp.dynamic = vcarb.power.readOp.dynamic * I +
|
|
cbarb.power.readOp.dynamic * O;
|
|
arbiter.power.readOp.leakage = vcarb.power.readOp.leakage * I +
|
|
cbarb.power.readOp.leakage * O;
|
|
arbiter.power.readOp.gate_leakage = vcarb.power.readOp.gate_leakage * I +
|
|
cbarb.power.readOp.gate_leakage * O;
|
|
|
|
// arb_stats();
|
|
power.readOp.dynamic = ((buffer.power.readOp.dynamic +
|
|
buffer.power.writeOp.dynamic) +
|
|
crossbar.power.readOp.dynamic +
|
|
arbiter.power.readOp.dynamic) * MIN(I, O) * M;
|
|
double pppm_t[4] = {1, I, I, 1};
|
|
power = power + (buffer.power * pppm_t + crossbar.power + arbiter.power) *
|
|
pppm_lkg;
|
|
|
|
}
|
|
|
|
void
|
|
Router::get_router_delay () {
|
|
FREQUENCY = 5; // move this to config file --TODO
|
|
cycle_time = (1 / (double)FREQUENCY) * 1e3; //ps
|
|
delay = 4;
|
|
max_cyc = 17 * g_tp.FO4; //s
|
|
max_cyc *= 1e12; //ps
|
|
if (cycle_time < max_cyc) {
|
|
FREQUENCY = (1 / max_cyc) * 1e3; //GHz
|
|
}
|
|
}
|
|
|
|
void
|
|
Router::get_router_area() {
|
|
area.h = I * buffer.area.h;
|
|
area.w = buffer.area.w + crossbar.area.w;
|
|
}
|
|
|
|
void
|
|
Router::calc_router_parameters() {
|
|
/* calculate router frequency and pipeline cycles */
|
|
get_router_delay();
|
|
|
|
/* router power stats */
|
|
get_router_power();
|
|
|
|
/* area stats */
|
|
get_router_area();
|
|
}
|
|
|
|
void
|
|
Router::print_router() {
|
|
cout << "\n\nRouter stats:\n";
|
|
cout << "\tRouter Area - " << area.get_area()*1e-6 << "(mm^2)\n";
|
|
cout << "\tMaximum possible network frequency - " << (1 / max_cyc)*1e3
|
|
<< "GHz\n";
|
|
cout << "\tNetwork frequency - " << FREQUENCY << " GHz\n";
|
|
cout << "\tNo. of Virtual channels - " << vc_count << "\n";
|
|
cout << "\tNo. of pipeline stages - " << delay << endl;
|
|
cout << "\tLink bandwidth - " << flit_size << " (bits)\n";
|
|
cout << "\tNo. of buffer entries per virtual channel - "
|
|
<< vc_buffer_size << "\n";
|
|
cout << "\tSimple buffer Area - " << buffer.area.get_area()*1e-6
|
|
<< "(mm^2)\n";
|
|
cout << "\tSimple buffer access (Read) - "
|
|
<< buffer.power.readOp.dynamic * 1e9 << " (nJ)\n";
|
|
cout << "\tSimple buffer leakage - " << buffer.power.readOp.leakage * 1e3
|
|
<< " (mW)\n";
|
|
cout << "\tCrossbar Area - " << crossbar.area.get_area()*1e-6
|
|
<< "(mm^2)\n";
|
|
cout << "\tCross bar access energy - "
|
|
<< crossbar.power.readOp.dynamic * 1e9 << " (nJ)\n";
|
|
cout << "\tCross bar leakage power - "
|
|
<< crossbar.power.readOp.leakage * 1e3 << " (mW)\n";
|
|
cout << "\tArbiter access energy (VC arb + Crossbar arb) - "
|
|
<< arbiter.power.readOp.dynamic * 1e9 << " (nJ)\n";
|
|
cout << "\tArbiter leakage (VC arb + Crossbar arb) - "
|
|
<< arbiter.power.readOp.leakage * 1e3 << " (mW)\n";
|
|
|
|
}
|
|
|