0deef376d9
This patch includes software engineering changes and some generic bug fixes Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known issues/concernts we did not have a chance to address in this patch. High-level changes in this patch include: 1) Making XML parsing modular and hierarchical: - Shift parsing responsibility into the components - Read XML in a (mostly) context-free recursive manner so that McPAT input files can contain arbitrary component hierarchies 2) Making power, energy, and area calculations a hierarchical and recursive process - Components track their subcomponents and recursively call compute functions in stages - Make C++ object hierarchy reflect inheritance of classes of components with similar structures - Simplify computeArea() and computeEnergy() functions to eliminate successive calls to calculate separate TDP vs. runtime energy - Remove Processor component (now unnecessary) and introduce a more abstract System component 3) Standardizing McPAT output across all components - Use a single, common data structure for storing and printing McPAT output - Recursively call print functions through component hierarchy 4) For caches, allow splitting data array and tag array reads and writes for better accuracy 5) Improving the usability of CACTI by printing more helpful warning and error messages 6) Minor: Impose more rigorous code style for clarity (more work still to be done) Overall, these changes greatly reduce the amount of replicated code, and they improve McPAT runtime and decrease memory footprint.
611 lines
22 KiB
C++
611 lines
22 KiB
C++
/*****************************************************************************
|
|
* McPAT/CACTI
|
|
* SOFTWARE LICENSE AGREEMENT
|
|
* Copyright 2012 Hewlett-Packard Development Company, L.P.
|
|
* Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
|
|
* All Rights Reserved
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
***************************************************************************/
|
|
|
|
|
|
|
|
#include <cassert>
|
|
|
|
#include "Ucache.h"
|
|
#include "nuca.h"
|
|
|
|
unsigned int MIN_BANKSIZE = 65536;
|
|
#define FIXED_OVERHEAD 55e-12 /* clock skew and jitter in s. Ref: Hrishikesh et al ISCA 01 */
|
|
#define LATCH_DELAY 28e-12 /* latch delay in s (later should use FO4 TODO) */
|
|
#define CONTR_2_BANK_LAT 0
|
|
|
|
int cont_stats[2 /*l2 or l3*/][5/* cores */][ROUTER_TYPES][7 /*banks*/][8 /* cycle time */];
|
|
|
|
Nuca::Nuca(
|
|
TechnologyParameter::DeviceType *dt = &(g_tp.peri_global)
|
|
): deviceType(dt) {
|
|
init_cont();
|
|
}
|
|
|
|
void
|
|
Nuca::init_cont() {
|
|
FILE *cont;
|
|
char line[5000];
|
|
char jk[5000];
|
|
cont = fopen("contention.dat", "r");
|
|
if (!cont) {
|
|
cout << "contention.dat file is missing!\n";
|
|
exit(0);
|
|
}
|
|
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 2; j < 5; j++) {
|
|
for (int k = 0; k < ROUTER_TYPES; k++) {
|
|
for (int l = 0; l < 7; l++) {
|
|
int *temp = cont_stats[i/*l2 or l3*/][j/*core*/][k/*64 or 128 or 256 link bw*/][l /* no banks*/];
|
|
assert(fscanf(cont, "%[^\n]\n", line) != EOF);
|
|
sscanf(line, "%[^:]: %d %d %d %d %d %d %d %d", jk,
|
|
&temp[0], &temp[1], &temp[2], &temp[3],
|
|
&temp[4], &temp[5], &temp[6], &temp[7]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
fclose(cont);
|
|
}
|
|
|
|
void
|
|
Nuca::print_cont_stats() {
|
|
for (int i = 0; i < 2; i++) {
|
|
for (int j = 2; j < 5; j++) {
|
|
for (int k = 0; k < ROUTER_TYPES; k++) {
|
|
for (int l = 0; l < 7; l++) {
|
|
for (int m = 0; l < 7; l++) {
|
|
cout << cont_stats[i][j][k][l][m] << " ";
|
|
}
|
|
cout << endl;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cout << endl;
|
|
}
|
|
|
|
Nuca::~Nuca() {
|
|
for (int i = wt_min; i <= wt_max; i++) {
|
|
delete wire_vertical[i];
|
|
delete wire_horizontal[i];
|
|
}
|
|
}
|
|
|
|
/* converts latency (in s) to cycles depending upon the FREQUENCY (in GHz) */
|
|
int
|
|
Nuca::calc_cycles(double lat, double oper_freq) {
|
|
//TODO: convert latch delay to FO4 */
|
|
double cycle_time = (1.0 / (oper_freq * 1e9)); /*s*/
|
|
cycle_time -= LATCH_DELAY;
|
|
cycle_time -= FIXED_OVERHEAD;
|
|
|
|
return (int)ceil(lat / cycle_time);
|
|
}
|
|
|
|
|
|
nuca_org_t::~nuca_org_t() {
|
|
// if(h_wire) delete h_wire;
|
|
// if(v_wire) delete v_wire;
|
|
// if(router) delete router;
|
|
}
|
|
|
|
/*
|
|
* Version - 6.0
|
|
*
|
|
* Perform exhaustive search across different bank organizatons,
|
|
* router configurations, grid organizations, and wire models and
|
|
* find an optimal NUCA organization
|
|
* For different bank count values
|
|
* 1. Optimal bank organization is calculated
|
|
* 2. For each bank organization, find different NUCA organizations
|
|
* using various router configurations, grid organizations,
|
|
* and wire models.
|
|
* 3. NUCA model with the least cost is picked for
|
|
* this particular bank count
|
|
* Finally include contention statistics and find the optimal
|
|
* NUCA configuration
|
|
*/
|
|
void
|
|
Nuca::sim_nuca() {
|
|
/* temp variables */
|
|
int it, ro, wr;
|
|
int num_cyc;
|
|
unsigned int i, j, k;
|
|
unsigned int r, c;
|
|
int l2_c;
|
|
int bank_count = 0;
|
|
uca_org_t ures;
|
|
nuca_org_t *opt_n;
|
|
mem_array tag, data;
|
|
list<nuca_org_t *> nuca_list;
|
|
Router *router_s[ROUTER_TYPES];
|
|
router_s[0] = new Router(64.0, 8, 4, &(g_tp.peri_global));
|
|
router_s[0]->print_router();
|
|
router_s[1] = new Router(128.0, 8, 4, &(g_tp.peri_global));
|
|
router_s[1]->print_router();
|
|
router_s[2] = new Router(256.0, 8, 4, &(g_tp.peri_global));
|
|
router_s[2]->print_router();
|
|
|
|
int core_in; // to store no. of cores
|
|
|
|
/* to search diff grid organizations */
|
|
double curr_hop, totno_hops, totno_hhops, totno_vhops, tot_lat,
|
|
curr_acclat;
|
|
double avg_lat, avg_hop, avg_hhop, avg_vhop, avg_dyn_power,
|
|
avg_leakage_power;
|
|
|
|
double opt_acclat = INF, opt_avg_lat = INF, opt_tot_lat = INF;
|
|
int opt_rows = 0;
|
|
int opt_columns = 0;
|
|
double opt_totno_hops = 0;
|
|
double opt_avg_hop = 0;
|
|
double opt_dyn_power = 0, opt_leakage_power = 0;
|
|
min_values_t minval;
|
|
|
|
int bank_start = 0;
|
|
|
|
int flit_width = 0;
|
|
|
|
/* vertical and horizontal hop latency values */
|
|
int ver_hop_lat, hor_hop_lat; /* in cycles */
|
|
|
|
|
|
/* no. of different bank sizes to consider */
|
|
int iterations;
|
|
|
|
|
|
g_ip->nuca_cache_sz = g_ip->cache_sz;
|
|
nuca_list.push_back(new nuca_org_t());
|
|
|
|
if (g_ip->cache_level == 0) l2_c = 1;
|
|
else l2_c = 0;
|
|
|
|
if (g_ip->cores <= 4) core_in = 2;
|
|
else if (g_ip->cores <= 8) core_in = 3;
|
|
else if (g_ip->cores <= 16) core_in = 4;
|
|
else {
|
|
cout << "Number of cores should be <= 16!\n";
|
|
exit(0);
|
|
}
|
|
|
|
|
|
// set the lower bound to an appropriate value. this depends on cache associativity
|
|
if (g_ip->assoc > 2) {
|
|
i = 2;
|
|
while (i != g_ip->assoc) {
|
|
MIN_BANKSIZE *= 2;
|
|
i *= 2;
|
|
}
|
|
}
|
|
|
|
iterations = (int)logtwo((int)g_ip->cache_sz / MIN_BANKSIZE);
|
|
|
|
if (g_ip->force_wiretype) {
|
|
if (g_ip->wt == Low_swing) {
|
|
wt_min = Low_swing;
|
|
wt_max = Low_swing;
|
|
} else {
|
|
wt_min = Global;
|
|
wt_max = Low_swing - 1;
|
|
}
|
|
} else {
|
|
wt_min = Global;
|
|
wt_max = Low_swing;
|
|
}
|
|
if (g_ip->nuca_bank_count != 0) { // simulate just one bank
|
|
if (g_ip->nuca_bank_count != 2 && g_ip->nuca_bank_count != 4 &&
|
|
g_ip->nuca_bank_count != 8 && g_ip->nuca_bank_count != 16 &&
|
|
g_ip->nuca_bank_count != 32 && g_ip->nuca_bank_count != 64) {
|
|
fprintf(stderr, "Incorrect bank count value! Please fix the ",
|
|
"value in cache.cfg\n");
|
|
}
|
|
bank_start = (int)logtwo((double)g_ip->nuca_bank_count);
|
|
iterations = bank_start + 1;
|
|
g_ip->cache_sz = g_ip->cache_sz / g_ip->nuca_bank_count;
|
|
}
|
|
cout << "Simulating various NUCA configurations\n";
|
|
for (it = bank_start; it < iterations; it++) {
|
|
/* different bank count values */
|
|
ures.tag_array2 = &tag;
|
|
ures.data_array2 = &data;
|
|
/*
|
|
* find the optimal bank organization
|
|
*/
|
|
solve(&ures);
|
|
// output_UCA(&ures);
|
|
bank_count = g_ip->nuca_cache_sz / g_ip->cache_sz;
|
|
cout << "====" << g_ip->cache_sz << "\n";
|
|
|
|
for (wr = wt_min; wr <= wt_max; wr++) {
|
|
|
|
for (ro = 0; ro < ROUTER_TYPES; ro++) {
|
|
flit_width = (int) router_s[ro]->flit_size; //initialize router
|
|
nuca_list.back()->nuca_pda.cycle_time = router_s[ro]->cycle_time;
|
|
|
|
/* calculate router and wire parameters */
|
|
|
|
double vlength = ures.cache_ht; /* length of the wire (u)*/
|
|
double hlength = ures.cache_len; // u
|
|
|
|
/* find delay, area, and power for wires */
|
|
wire_vertical[wr] = new Wire((enum Wire_type) wr, vlength);
|
|
wire_horizontal[wr] = new Wire((enum Wire_type) wr, hlength);
|
|
|
|
|
|
hor_hop_lat =
|
|
calc_cycles(wire_horizontal[wr]->delay,
|
|
1 /(nuca_list.back()->nuca_pda.cycle_time *
|
|
.001));
|
|
ver_hop_lat =
|
|
calc_cycles(wire_vertical[wr]->delay,
|
|
1 / (nuca_list.back()->nuca_pda.cycle_time *
|
|
.001));
|
|
|
|
/*
|
|
* assume a grid like topology and explore for optimal network
|
|
* configuration using different row and column count values.
|
|
*/
|
|
for (c = 1; c <= (unsigned int)bank_count; c++) {
|
|
while (bank_count % c != 0) c++;
|
|
r = bank_count / c;
|
|
|
|
/*
|
|
* to find the avg access latency of a NUCA cache, uncontended
|
|
* access time to each bank from the
|
|
* cache controller is calculated.
|
|
* avg latency =
|
|
* sum of the access latencies to individual banks)/bank
|
|
* count value.
|
|
*/
|
|
totno_hops = totno_hhops = totno_vhops = tot_lat = 0;
|
|
k = 1;
|
|
for (i = 0; i < r; i++) {
|
|
for (j = 0; j < c; j++) {
|
|
/*
|
|
* vertical hops including the
|
|
* first hop from the cache controller
|
|
*/
|
|
curr_hop = i + 1;
|
|
curr_hop += j; /* horizontal hops */
|
|
totno_hhops += j;
|
|
totno_vhops += (i + 1);
|
|
curr_acclat = (i * ver_hop_lat + CONTR_2_BANK_LAT +
|
|
j * hor_hop_lat);
|
|
|
|
tot_lat += curr_acclat;
|
|
totno_hops += curr_hop;
|
|
}
|
|
}
|
|
avg_lat = tot_lat / bank_count;
|
|
avg_hop = totno_hops / bank_count;
|
|
avg_hhop = totno_hhops / bank_count;
|
|
avg_vhop = totno_vhops / bank_count;
|
|
|
|
/* net access latency */
|
|
curr_acclat = 2 * avg_lat + 2 * (router_s[ro]->delay *
|
|
avg_hop) +
|
|
calc_cycles(ures.access_time,
|
|
1 /
|
|
(nuca_list.back()->nuca_pda.cycle_time *
|
|
.001));
|
|
|
|
/* avg access lat of nuca */
|
|
avg_dyn_power =
|
|
avg_hop *
|
|
(router_s[ro]->power.readOp.dynamic) + avg_hhop *
|
|
(wire_horizontal[wr]->power.readOp.dynamic) *
|
|
(g_ip->block_sz * 8 + 64) + avg_vhop *
|
|
(wire_vertical[wr]->power.readOp.dynamic) *
|
|
(g_ip->block_sz * 8 + 64) + ures.power.readOp.dynamic;
|
|
|
|
avg_leakage_power =
|
|
bank_count * router_s[ro]->power.readOp.leakage +
|
|
avg_hhop * (wire_horizontal[wr]->power.readOp.leakage *
|
|
wire_horizontal[wr]->delay) * flit_width +
|
|
avg_vhop * (wire_vertical[wr]->power.readOp.leakage *
|
|
wire_horizontal[wr]->delay);
|
|
|
|
if (curr_acclat < opt_acclat) {
|
|
opt_acclat = curr_acclat;
|
|
opt_tot_lat = tot_lat;
|
|
opt_avg_lat = avg_lat;
|
|
opt_totno_hops = totno_hops;
|
|
opt_avg_hop = avg_hop;
|
|
opt_rows = r;
|
|
opt_columns = c;
|
|
opt_dyn_power = avg_dyn_power;
|
|
opt_leakage_power = avg_leakage_power;
|
|
}
|
|
totno_hops = 0;
|
|
tot_lat = 0;
|
|
totno_hhops = 0;
|
|
totno_vhops = 0;
|
|
}
|
|
nuca_list.back()->wire_pda.power.readOp.dynamic =
|
|
opt_avg_hop * flit_width *
|
|
(wire_horizontal[wr]->power.readOp.dynamic +
|
|
wire_vertical[wr]->power.readOp.dynamic);
|
|
nuca_list.back()->avg_hops = opt_avg_hop;
|
|
/* network delay/power */
|
|
nuca_list.back()->h_wire = wire_horizontal[wr];
|
|
nuca_list.back()->v_wire = wire_vertical[wr];
|
|
nuca_list.back()->router = router_s[ro];
|
|
/* bank delay/power */
|
|
|
|
nuca_list.back()->bank_pda.delay = ures.access_time;
|
|
nuca_list.back()->bank_pda.power = ures.power;
|
|
nuca_list.back()->bank_pda.area.h = ures.cache_ht;
|
|
nuca_list.back()->bank_pda.area.w = ures.cache_len;
|
|
nuca_list.back()->bank_pda.cycle_time = ures.cycle_time;
|
|
|
|
num_cyc = calc_cycles(nuca_list.back()->bank_pda.delay /*s*/,
|
|
1 /
|
|
(nuca_list.back()->nuca_pda.cycle_time *
|
|
.001/*GHz*/));
|
|
if (num_cyc % 2 != 0) num_cyc++;
|
|
if (num_cyc > 16) num_cyc = 16; // we have data only up to 16 cycles
|
|
|
|
if (it < 7) {
|
|
nuca_list.back()->nuca_pda.delay = opt_acclat +
|
|
cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
|
|
nuca_list.back()->contention =
|
|
cont_stats[l2_c][core_in][ro][it][num_cyc/2-1];
|
|
} else {
|
|
nuca_list.back()->nuca_pda.delay = opt_acclat +
|
|
cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
|
|
nuca_list.back()->contention =
|
|
cont_stats[l2_c][core_in][ro][7][num_cyc/2-1];
|
|
}
|
|
nuca_list.back()->nuca_pda.power.readOp.dynamic = opt_dyn_power;
|
|
nuca_list.back()->nuca_pda.power.readOp.leakage = opt_leakage_power;
|
|
|
|
/* array organization */
|
|
nuca_list.back()->bank_count = bank_count;
|
|
nuca_list.back()->rows = opt_rows;
|
|
nuca_list.back()->columns = opt_columns;
|
|
calculate_nuca_area (nuca_list.back());
|
|
|
|
minval.update_min_values(nuca_list.back());
|
|
nuca_list.push_back(new nuca_org_t());
|
|
opt_acclat = BIGNUM;
|
|
|
|
}
|
|
}
|
|
g_ip->cache_sz /= 2;
|
|
}
|
|
|
|
delete(nuca_list.back());
|
|
nuca_list.pop_back();
|
|
opt_n = find_optimal_nuca(&nuca_list, &minval);
|
|
print_nuca(opt_n);
|
|
g_ip->cache_sz = g_ip->nuca_cache_sz / opt_n->bank_count;
|
|
|
|
list<nuca_org_t *>::iterator niter;
|
|
for (niter = nuca_list.begin(); niter != nuca_list.end(); ++niter) {
|
|
delete *niter;
|
|
}
|
|
nuca_list.clear();
|
|
|
|
for (int i = 0; i < ROUTER_TYPES; i++) {
|
|
delete router_s[i];
|
|
}
|
|
g_ip->display_ip();
|
|
// g_ip->force_cache_config = true;
|
|
// g_ip->ndwl = 8;
|
|
// g_ip->ndbl = 16;
|
|
// g_ip->nspd = 4;
|
|
// g_ip->ndcm = 1;
|
|
// g_ip->ndsam1 = 8;
|
|
// g_ip->ndsam2 = 32;
|
|
|
|
}
|
|
|
|
|
|
void
|
|
Nuca::print_nuca (nuca_org_t *fr) {
|
|
printf("\n---------- CACTI version 6.5, Non-uniform Cache Access "
|
|
"----------\n\n");
|
|
printf("Optimal number of banks - %d\n", fr->bank_count);
|
|
printf("Grid organization rows x columns - %d x %d\n",
|
|
fr->rows, fr->columns);
|
|
printf("Network frequency - %g GHz\n",
|
|
(1 / fr->nuca_pda.cycle_time)*1e3);
|
|
printf("Cache dimension (mm x mm) - %g x %g\n",
|
|
fr->nuca_pda.area.h,
|
|
fr->nuca_pda.area.w);
|
|
|
|
fr->router->print_router();
|
|
|
|
printf("\n\nWire stats:\n");
|
|
if (fr->h_wire->wt == Global) {
|
|
printf("\tWire type - Full swing global wires with least "
|
|
"possible delay\n");
|
|
} else if (fr->h_wire->wt == Global_5) {
|
|
printf("\tWire type - Full swing global wires with "
|
|
"5%% delay penalty\n");
|
|
} else if (fr->h_wire->wt == Global_10) {
|
|
printf("\tWire type - Full swing global wires with "
|
|
"10%% delay penalty\n");
|
|
} else if (fr->h_wire->wt == Global_20) {
|
|
printf("\tWire type - Full swing global wires with "
|
|
"20%% delay penalty\n");
|
|
} else if (fr->h_wire->wt == Global_30) {
|
|
printf("\tWire type - Full swing global wires with "
|
|
"30%% delay penalty\n");
|
|
} else if (fr->h_wire->wt == Low_swing) {
|
|
printf("\tWire type - Low swing wires\n");
|
|
}
|
|
|
|
printf("\tHorizontal link delay - %g (ns)\n",
|
|
fr->h_wire->delay*1e9);
|
|
printf("\tVertical link delay - %g (ns)\n",
|
|
fr->v_wire->delay*1e9);
|
|
printf("\tDelay/length - %g (ns/mm)\n",
|
|
fr->h_wire->delay*1e9 / fr->bank_pda.area.w);
|
|
printf("\tHorizontal link energy -dynamic/access %g (nJ)\n"
|
|
"\t -leakage %g (nW)\n\n",
|
|
fr->h_wire->power.readOp.dynamic*1e9,
|
|
fr->h_wire->power.readOp.leakage*1e9);
|
|
printf("\tVertical link energy -dynamic/access %g (nJ)\n"
|
|
"\t -leakage %g (nW)\n\n",
|
|
fr->v_wire->power.readOp.dynamic*1e9,
|
|
fr->v_wire->power.readOp.leakage*1e9);
|
|
printf("\n\n");
|
|
fr->v_wire->print_wire();
|
|
printf("\n\nBank stats:\n");
|
|
}
|
|
|
|
|
|
nuca_org_t *
|
|
Nuca::find_optimal_nuca (list<nuca_org_t *> *n, min_values_t *minval) {
|
|
double cost = 0;
|
|
double min_cost = BIGNUM;
|
|
nuca_org_t *res = NULL;
|
|
float d, a, dp, lp, c;
|
|
int v;
|
|
dp = g_ip->dynamic_power_wt_nuca;
|
|
lp = g_ip->leakage_power_wt_nuca;
|
|
a = g_ip->area_wt_nuca;
|
|
d = g_ip->delay_wt_nuca;
|
|
c = g_ip->cycle_time_wt_nuca;
|
|
|
|
list<nuca_org_t *>::iterator niter;
|
|
|
|
|
|
for (niter = n->begin(); niter != n->end(); niter++) {
|
|
fprintf(stderr, "\n-----------------------------"
|
|
"---------------\n");
|
|
|
|
|
|
printf("NUCA___stats %d \tbankcount: lat = %g \tdynP = %g \twt = %d\t "
|
|
"bank_dpower = %g \tleak = %g \tcycle = %g\n",
|
|
(*niter)->bank_count,
|
|
(*niter)->nuca_pda.delay,
|
|
(*niter)->nuca_pda.power.readOp.dynamic,
|
|
(*niter)->h_wire->wt,
|
|
(*niter)->bank_pda.power.readOp.dynamic,
|
|
(*niter)->nuca_pda.power.readOp.leakage,
|
|
(*niter)->nuca_pda.cycle_time);
|
|
|
|
|
|
if (g_ip->ed == 1) {
|
|
cost = ((*niter)->nuca_pda.delay / minval->min_delay) *
|
|
((*niter)->nuca_pda.power.readOp.dynamic / minval->min_dyn);
|
|
if (min_cost > cost) {
|
|
min_cost = cost;
|
|
res = ((*niter));
|
|
}
|
|
} else if (g_ip->ed == 2) {
|
|
cost = ((*niter)->nuca_pda.delay / minval->min_delay) *
|
|
((*niter)->nuca_pda.delay / minval->min_delay) *
|
|
((*niter)->nuca_pda.power.readOp.dynamic / minval->min_dyn);
|
|
if (min_cost > cost) {
|
|
min_cost = cost;
|
|
res = ((*niter));
|
|
}
|
|
} else {
|
|
/*
|
|
* check whether the current organization
|
|
* meets the input deviation constraints
|
|
*/
|
|
v = check_nuca_org((*niter), minval);
|
|
if (minval->min_leakage == 0) minval->min_leakage = 0.1; //FIXME remove this after leakage modeling
|
|
|
|
if (v) {
|
|
cost = (d * ((*niter)->nuca_pda.delay / minval->min_delay) +
|
|
c * ((*niter)->nuca_pda.cycle_time / minval->min_cyc) +
|
|
dp * ((*niter)->nuca_pda.power.readOp.dynamic /
|
|
minval->min_dyn) +
|
|
lp * ((*niter)->nuca_pda.power.readOp.leakage /
|
|
minval->min_leakage) +
|
|
a * ((*niter)->nuca_pda.area.get_area() /
|
|
minval->min_area));
|
|
fprintf(stderr, "cost = %g\n", cost);
|
|
|
|
if (min_cost > cost) {
|
|
min_cost = cost;
|
|
res = ((*niter));
|
|
}
|
|
} else {
|
|
niter = n->erase(niter);
|
|
if (niter != n->begin())
|
|
niter --;
|
|
}
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int
|
|
Nuca::check_nuca_org (nuca_org_t *n, min_values_t *minval) {
|
|
if (((n->nuca_pda.delay - minval->min_delay)*100 / minval->min_delay) >
|
|
g_ip->delay_dev_nuca) {
|
|
return 0;
|
|
}
|
|
if (((n->nuca_pda.power.readOp.dynamic - minval->min_dyn) /
|
|
minval->min_dyn)*100 >
|
|
g_ip->dynamic_power_dev_nuca) {
|
|
return 0;
|
|
}
|
|
if (((n->nuca_pda.power.readOp.leakage - minval->min_leakage) /
|
|
minval->min_leakage)*100 >
|
|
g_ip->leakage_power_dev_nuca) {
|
|
return 0;
|
|
}
|
|
if (((n->nuca_pda.cycle_time - minval->min_cyc) / minval->min_cyc)*100 >
|
|
g_ip->cycle_time_dev_nuca) {
|
|
return 0;
|
|
}
|
|
if (((n->nuca_pda.area.get_area() - minval->min_area) / minval->min_area) *
|
|
100 >
|
|
g_ip->area_dev_nuca) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
void
|
|
Nuca::calculate_nuca_area (nuca_org_t *nuca) {
|
|
nuca->nuca_pda.area.h =
|
|
nuca->rows * ((nuca->h_wire->wire_width +
|
|
nuca->h_wire->wire_spacing)
|
|
* nuca->router->flit_size +
|
|
nuca->bank_pda.area.h);
|
|
|
|
nuca->nuca_pda.area.w =
|
|
nuca->columns * ((nuca->v_wire->wire_width +
|
|
nuca->v_wire->wire_spacing)
|
|
* nuca->router->flit_size +
|
|
nuca->bank_pda.area.w);
|
|
}
|
|
|