gem5/cpu/cpu_exec_context.cc
Gabe Black 8e4ec55703 Changed the floating point register file into a class with appropriate accessor functions. The width of the floating point register to access can be specified, and if not, it will be accessed at its "natural" width. That is, the width of each individual register. Also, the functions which access the bit representation of floating point registers can use the blahblahBits functions now instead of blahblahInt.
arch/alpha/arguments.cc:
    Renamed readFloatRegInt to readFloatRegBits
arch/alpha/ev5.cc:
    Removed the Double from setFloatRegDouble
arch/alpha/registerfile.hh:
    Changed the floating point register file from a union of arrays to a class with appropriate accessor functions. The interface is necessary for SPARC.
arch/alpha/types.hh:
    Changed the FloatReg type from a union of uint64_t and double to a double, and defined a new type FloatRegBits which is a uint64_t and is used to return the bits which compose a floating point register rather than the value of the register.
arch/isa_parser.py:
    Adjusted the makeRead and makeWrite functions to generate the new versions of readFloatReg and setFloatReg.
base/remote_gdb.cc:
kern/tru64/tru64.hh:
    Replaced setFloatRegInt with setFloatRegBits
cpu/cpu_exec_context.cc:
    Removed the duplicated code for setting the floating point registers, and renamed the function to setFloatRegBits and readFloatRegBits.
cpu/cpu_exec_context.hh:
cpu/exec_context.hh:
cpu/o3/alpha_cpu_impl.hh:
cpu/o3/alpha_dyn_inst.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
cpu/o3/regfile.hh:
cpu/ozone/cpu.hh:
cpu/simple/cpu.hh:
    Implemented the new versions of the floating point read and set functions.
cpu/simple/cpu.cc:
    Replaced setFloatRegDouble with setFloatReg

--HG--
extra : convert_revision : 3dad06224723137f6033c335fb8f6395636767f2
2006-03-14 15:55:00 -05:00

275 lines
7 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string>
#include "arch/isa_traits.hh"
#include "cpu/base.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
#if FULL_SYSTEM
#include "base/callback.hh"
#include "base/cprintf.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "cpu/profile.hh"
#include "kern/kernel_stats.hh"
#include "sim/serialize.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
#include "arch/stacktrace.hh"
#else
#include "sim/process.hh"
#include "mem/translating_port.hh"
#endif
using namespace std;
// constructor
#if FULL_SYSTEM
CPUExecContext::CPUExecContext(BaseCPU *_cpu, int _thread_num, System *_sys,
AlphaITB *_itb, AlphaDTB *_dtb,
Memory *_mem)
: _status(ExecContext::Unallocated), cpu(_cpu), thread_num(_thread_num),
cpu_id(-1), lastActivate(0), lastSuspend(0), mem(_mem), itb(_itb),
dtb(_dtb), system(_sys), memctrl(_sys->memctrl), physmem(_sys->physmem),
profile(NULL), quiesceEvent(this), func_exe_inst(0), storeCondFailures(0)
{
proxy = new ProxyExecContext<CPUExecContext>(this);
memset(&regs, 0, sizeof(RegFile));
if (cpu->params->profile) {
profile = new FunctionProfile(system->kernelSymtab);
Callback *cb =
new MakeCallback<CPUExecContext,
&CPUExecContext::dumpFuncProfile>(this);
registerExitCallback(cb);
}
// let's fill with a dummy node for now so we don't get a segfault
// on the first cycle when there's no node available.
static ProfileNode dummyNode;
profileNode = &dummyNode;
profilePC = 3;
}
#else
CPUExecContext::CPUExecContext(BaseCPU *_cpu, int _thread_num,
Process *_process, int _asid, Port *mem_port)
: _status(ExecContext::Unallocated),
cpu(_cpu), thread_num(_thread_num), cpu_id(-1), lastActivate(0),
lastSuspend(0), process(_process), asid(_asid),
func_exe_inst(0), storeCondFailures(0)
{
port = new TranslatingPort(mem_port, process->pTable);
memset(&regs, 0, sizeof(RegFile));
proxy = new ProxyExecContext<CPUExecContext>(this);
}
CPUExecContext::CPUExecContext(RegFile *regFile)
: cpu(NULL), thread_num(-1), process(NULL), asid(-1),
func_exe_inst(0), storeCondFailures(0)
{
regs = *regFile;
proxy = new ProxyExecContext<CPUExecContext>(this);
}
#endif
CPUExecContext::~CPUExecContext()
{
delete proxy;
}
#if FULL_SYSTEM
void
CPUExecContext::dumpFuncProfile()
{
std::ostream *os = simout.create(csprintf("profile.%s.dat", cpu->name()));
profile->dump(proxy, *os);
}
CPUExecContext::EndQuiesceEvent::EndQuiesceEvent(CPUExecContext *_cpuXC)
: Event(&mainEventQueue), cpuXC(_cpuXC)
{
}
void
CPUExecContext::EndQuiesceEvent::process()
{
cpuXC->activate();
}
const char*
CPUExecContext::EndQuiesceEvent::description()
{
return "End Quiesce Event.";
}
void
CPUExecContext::profileClear()
{
if (profile)
profile->clear();
}
void
CPUExecContext::profileSample()
{
if (profile)
profile->sample(profileNode, profilePC);
}
#endif
void
CPUExecContext::takeOverFrom(ExecContext *oldContext)
{
// some things should already be set up
#if FULL_SYSTEM
assert(system == oldContext->getSystemPtr());
#else
assert(process == oldContext->getProcessPtr());
#endif
// copy over functional state
_status = oldContext->status();
copyArchRegs(oldContext);
cpu_id = oldContext->readCpuId();
#if !FULL_SYSTEM
func_exe_inst = oldContext->readFuncExeInst();
#endif
storeCondFailures = 0;
oldContext->setStatus(ExecContext::Unallocated);
}
void
CPUExecContext::serialize(ostream &os)
{
SERIALIZE_ENUM(_status);
regs.serialize(os);
// thread_num and cpu_id are deterministic from the config
SERIALIZE_SCALAR(func_exe_inst);
SERIALIZE_SCALAR(inst);
#if FULL_SYSTEM
Tick quiesceEndTick = 0;
if (quiesceEvent.scheduled())
quiesceEndTick = quiesceEvent.when();
SERIALIZE_SCALAR(quiesceEndTick);
#endif
}
void
CPUExecContext::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_ENUM(_status);
regs.unserialize(cp, section);
// thread_num and cpu_id are deterministic from the config
UNSERIALIZE_SCALAR(func_exe_inst);
UNSERIALIZE_SCALAR(inst);
#if FULL_SYSTEM
Tick quiesceEndTick;
UNSERIALIZE_SCALAR(quiesceEndTick);
if (quiesceEndTick)
quiesceEvent.schedule(quiesceEndTick);
#endif
}
void
CPUExecContext::activate(int delay)
{
if (status() == ExecContext::Active)
return;
lastActivate = curTick;
_status = ExecContext::Active;
cpu->activateContext(thread_num, delay);
}
void
CPUExecContext::suspend()
{
if (status() == ExecContext::Suspended)
return;
lastActivate = curTick;
lastSuspend = curTick;
/*
#if FULL_SYSTEM
// Don't change the status from active if there are pending interrupts
if (cpu->check_interrupts()) {
assert(status() == ExecContext::Active);
return;
}
#endif
*/
_status = ExecContext::Suspended;
cpu->suspendContext(thread_num);
}
void
CPUExecContext::deallocate()
{
if (status() == ExecContext::Unallocated)
return;
_status = ExecContext::Unallocated;
cpu->deallocateContext(thread_num);
}
void
CPUExecContext::halt()
{
if (status() == ExecContext::Halted)
return;
_status = ExecContext::Halted;
cpu->haltContext(thread_num);
}
void
CPUExecContext::regStats(const string &name)
{
}
void
CPUExecContext::copyArchRegs(ExecContext *xc)
{
TheISA::copyRegs(xc, proxy);
}