gem5/arch/alpha/alpha_memory.cc
Andrew Schultz f5c7b1358c Remove the uncacheable bit 39 check (needs to be merged in with head tree
if Tru64 is to continue to be supported on Turbolaser) and fixed
translation of physical addresses by clearing PA<42:35> when the real
uncachable bit (43) is set

arch/alpha/ev5.hh:
    Change to support 256 ASNs and seperate VA_SPACE checks for EV5 and EV6
    also add support proper translation of uncacheable physical addresses
dev/ide_ctrl.cc:
    Fix to work with real address translation

--HG--
extra : convert_revision : aa3d1c284b8271d4763a8da2509c91bbcf83189a
2004-05-19 15:58:24 -04:00

628 lines
16 KiB
C++

/*
* Copyright (c) 2003 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sstream>
#include <string>
#include <vector>
#include "base/inifile.hh"
#include "base/str.hh"
#include "base/trace.hh"
#include "cpu/exec_context.hh"
#include "sim/builder.hh"
#include "targetarch/alpha_memory.hh"
#include "targetarch/ev5.hh"
using namespace std;
///////////////////////////////////////////////////////////////////////
//
// Alpha TLB
//
#ifdef DEBUG
bool uncacheBit39 = false;
bool uncacheBit40 = false;
#endif
AlphaTLB::AlphaTLB(const string &name, int s)
: SimObject(name), size(s), nlu(0)
{
table = new AlphaISA::PTE[size];
memset(table, 0, sizeof(AlphaISA::PTE[size]));
}
AlphaTLB::~AlphaTLB()
{
if (table)
delete [] table;
}
// look up an entry in the TLB
AlphaISA::PTE *
AlphaTLB::lookup(Addr vpn, uint8_t asn) const
{
DPRINTF(TLB, "lookup %#x\n", vpn);
PageTable::const_iterator i = lookupTable.find(vpn);
if (i == lookupTable.end())
return NULL;
while (i->first == vpn) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vpn == pte->tag && (pte->asma || pte->asn == asn))
return pte;
++i;
}
// not found...
return NULL;
}
void
AlphaTLB::checkCacheability(MemReqPtr &req)
{
// in Alpha, cacheability is controlled by upper-level bits of the
// physical address
/*
* We support having the uncacheable bit in either bit 39 or bit 40.
* The Turbolaser platform (and EV5) support having the bit in 39, but
* Tsunami (which Linux assumes uses an EV6) generates accesses with
* the bit in 40. So we must check for both, but we have debug flags
* to catch a weird case where both are used, which shouldn't happen.
*/
if (req->paddr & PA_UNCACHED_BIT_43) {
// IPR memory space not implemented
if (PA_IPR_SPACE(req->paddr))
if (!req->xc->misspeculating())
panic("IPR memory space not implemented! PA=%x\n",
req->paddr);
// mark request as uncacheable
req->flags |= UNCACHEABLE;
// Clear bits 42:35 of the physical address (10-2 in Tsunami manual)
req->paddr &= PA_UNCACHED_MASK;
}
}
// insert a new TLB entry
void
AlphaTLB::insert(Addr vaddr, AlphaISA::PTE &pte)
{
if (table[nlu].valid) {
Addr oldvpn = table[nlu].tag;
PageTable::iterator i = lookupTable.find(oldvpn);
if (i == lookupTable.end())
panic("TLB entry not found in lookupTable");
int index;
while ((index = i->second) != nlu) {
if (table[index].tag != oldvpn)
panic("TLB entry not found in lookupTable");
++i;
}
DPRINTF(TLB, "remove @%d: %#x -> %#x\n", nlu, oldvpn, table[nlu].ppn);
lookupTable.erase(i);
}
Addr vpn = VA_VPN(vaddr);
DPRINTF(TLB, "insert @%d: %#x -> %#x\n", nlu, vpn, pte.ppn);
table[nlu] = pte;
table[nlu].tag = vpn;
table[nlu].valid = true;
lookupTable.insert(make_pair(vpn, nlu));
nextnlu();
}
void
AlphaTLB::flushAll()
{
memset(table, 0, sizeof(AlphaISA::PTE[size]));
lookupTable.clear();
nlu = 0;
}
void
AlphaTLB::flushProcesses()
{
PageTable::iterator i = lookupTable.begin();
PageTable::iterator end = lookupTable.end();
while (i != end) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (!pte->asma) {
DPRINTF(TLB, "flush @%d: %#x -> %#x\n", index, pte->tag, pte->ppn);
pte->valid = false;
lookupTable.erase(i);
}
++i;
}
}
void
AlphaTLB::flushAddr(Addr vaddr, uint8_t asn)
{
Addr vpn = VA_VPN(vaddr);
PageTable::iterator i = lookupTable.find(vpn);
if (i == lookupTable.end())
return;
while (i->first == vpn) {
int index = i->second;
AlphaISA::PTE *pte = &table[index];
assert(pte->valid);
if (vpn == pte->tag && (pte->asma || pte->asn == asn)) {
DPRINTF(TLB, "flushaddr @%d: %#x -> %#x\n", index, vpn, pte->ppn);
// invalidate this entry
pte->valid = false;
lookupTable.erase(i);
}
++i;
}
}
void
AlphaTLB::serialize(ostream &os)
{
SERIALIZE_SCALAR(size);
SERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
nameOut(os, csprintf("%s.PTE%d", name(), i));
table[i].serialize(os);
}
}
void
AlphaTLB::unserialize(Checkpoint *cp, const string &section)
{
UNSERIALIZE_SCALAR(size);
UNSERIALIZE_SCALAR(nlu);
for (int i = 0; i < size; i++) {
table[i].unserialize(cp, csprintf("%s.PTE%d", section, i));
if (table[i].valid) {
lookupTable.insert(make_pair(table[i].tag, i));
}
}
}
///////////////////////////////////////////////////////////////////////
//
// Alpha ITB
//
AlphaITB::AlphaITB(const std::string &name, int size)
: AlphaTLB(name, size)
{}
void
AlphaITB::regStats()
{
hits
.name(name() + ".hits")
.desc("ITB hits");
misses
.name(name() + ".misses")
.desc("ITB misses");
acv
.name(name() + ".acv")
.desc("ITB acv");
accesses
.name(name() + ".accesses")
.desc("ITB accesses");
accesses = hits + misses;
}
void
AlphaITB::fault(Addr pc, ExecContext *xc) const
{
uint64_t *ipr = xc->regs.ipr;
if (!xc->misspeculating()) {
ipr[AlphaISA::IPR_ITB_TAG] = pc;
ipr[AlphaISA::IPR_IFAULT_VA_FORM] =
ipr[AlphaISA::IPR_IVPTBR] | (VA_VPN(pc) << 3);
}
}
Fault
AlphaITB::translate(MemReqPtr &req) const
{
InternalProcReg *ipr = req->xc->regs.ipr;
if (PC_PAL(req->vaddr)) {
// strip off PAL PC marker (lsb is 1)
req->paddr = (req->vaddr & ~3) & PA_IMPL_MASK;
hits++;
return No_Fault;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr;
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req->vaddr, req->xc);
acv++;
return ITB_Acv_Fault;
}
// VA<42:41> == 2, VA<39:13> maps directly to PA<39:13> for EV5
// VA<47:41> == 0x7e, VA<40:13> maps directly to PA<40:13> for EV6
if (VA_SPACE_EV6(req->vaddr) == 0x7e) {
// only valid in kernel mode
if (ICM_CM(ipr[AlphaISA::IPR_ICM]) != AlphaISA::mode_kernel) {
fault(req->vaddr, req->xc);
acv++;
return ITB_Acv_Fault;
}
req->paddr = req->vaddr & PA_IMPL_MASK;
// sign extend the physical address properly
if (req->paddr & PA_UNCACHED_BIT_40)
req->paddr |= ULL(0xf0000000000);
else
req->paddr &= ULL(0xffffffffff);
} else {
// not a physical address: need to look up pte
AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr),
DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
if (!pte) {
fault(req->vaddr, req->xc);
misses++;
return ITB_Fault_Fault;
}
req->paddr = PA_PFN2PA(pte->ppn) + VA_POFS(req->vaddr & ~3);
// check permissions for this access
if (!(pte->xre & (1 << ICM_CM(ipr[AlphaISA::IPR_ICM])))) {
// instruction access fault
fault(req->vaddr, req->xc);
acv++;
return ITB_Acv_Fault;
}
hits++;
}
}
// check that the physical address is ok (catch bad physical addresses)
if (req->paddr & ~PA_IMPL_MASK)
return Machine_Check_Fault;
checkCacheability(req);
return No_Fault;
}
///////////////////////////////////////////////////////////////////////
//
// Alpha DTB
//
AlphaDTB::AlphaDTB(const std::string &name, int size)
: AlphaTLB(name, size)
{}
void
AlphaDTB::regStats()
{
read_hits
.name(name() + ".read_hits")
.desc("DTB read hits")
;
read_misses
.name(name() + ".read_misses")
.desc("DTB read misses")
;
read_acv
.name(name() + ".read_acv")
.desc("DTB read access violations")
;
read_accesses
.name(name() + ".read_accesses")
.desc("DTB read accesses")
;
write_hits
.name(name() + ".write_hits")
.desc("DTB write hits")
;
write_misses
.name(name() + ".write_misses")
.desc("DTB write misses")
;
write_acv
.name(name() + ".write_acv")
.desc("DTB write access violations")
;
write_accesses
.name(name() + ".write_accesses")
.desc("DTB write accesses")
;
hits
.name(name() + ".hits")
.desc("DTB hits")
;
misses
.name(name() + ".misses")
.desc("DTB misses")
;
acv
.name(name() + ".acv")
.desc("DTB access violations")
;
accesses
.name(name() + ".accesses")
.desc("DTB accesses")
;
hits = read_hits + write_hits;
misses = read_misses + write_misses;
acv = read_acv + write_acv;
accesses = read_accesses + write_accesses;
}
void
AlphaDTB::fault(Addr vaddr, uint64_t flags, ExecContext *xc) const
{
uint64_t *ipr = xc->regs.ipr;
// set fault address and flags
if (!xc->misspeculating() && !xc->regs.intrlock) {
// set VA register with faulting address
ipr[AlphaISA::IPR_VA] = vaddr;
// set MM_STAT register flags
ipr[AlphaISA::IPR_MM_STAT] = (((xc->regs.opcode & 0x3f) << 11)
| ((xc->regs.ra & 0x1f) << 6)
| (flags & 0x3f));
// set VA_FORM register with faulting formatted address
ipr[AlphaISA::IPR_VA_FORM] =
ipr[AlphaISA::IPR_MVPTBR] | (VA_VPN(vaddr) << 3);
// lock these registers until the VA register is read
xc->regs.intrlock = true;
}
}
Fault
AlphaDTB::translate(MemReqPtr &req, bool write) const
{
RegFile *regs = &req->xc->regs;
Addr pc = regs->pc;
InternalProcReg *ipr = regs->ipr;
AlphaISA::mode_type mode =
(AlphaISA::mode_type)DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]);
if (PC_PAL(pc)) {
mode = (req->flags & ALTMODE) ?
(AlphaISA::mode_type)ALT_MODE_AM(ipr[AlphaISA::IPR_ALT_MODE])
: AlphaISA::mode_kernel;
}
if (req->flags & PHYSICAL) {
req->paddr = req->vaddr;
} else {
// verify that this is a good virtual address
if (!validVirtualAddress(req->vaddr)) {
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_BAD_VA_MASK |
MM_STAT_ACV_MASK),
req->xc);
if (write) { write_acv++; } else { read_acv++; }
return DTB_Fault_Fault;
}
// Check for "superpage" mapping
if (VA_SPACE_EV6(req->vaddr) == 0x7e) {
// only valid in kernel mode
if (DTB_CM_CM(ipr[AlphaISA::IPR_DTB_CM]) !=
AlphaISA::mode_kernel) {
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_ACV_MASK),
req->xc);
if (write) { write_acv++; } else { read_acv++; }
return DTB_Acv_Fault;
}
req->paddr = req->vaddr & PA_IMPL_MASK;
// sign extend the physical address properly
if (req->paddr & PA_UNCACHED_BIT_40)
req->paddr |= ULL(0xf0000000000);
else
req->paddr &= ULL(0xffffffffff);
} else {
if (write)
write_accesses++;
else
read_accesses++;
// not a physical address: need to look up pte
AlphaISA::PTE *pte = lookup(VA_VPN(req->vaddr),
DTB_ASN_ASN(ipr[AlphaISA::IPR_DTB_ASN]));
if (!pte) {
// page fault
fault(req->vaddr,
((write ? MM_STAT_WR_MASK : 0) | MM_STAT_DTB_MISS_MASK),
req->xc);
if (write) { write_misses++; } else { read_misses++; }
return (req->flags & VPTE) ? Pdtb_Miss_Fault : Ndtb_Miss_Fault;
}
req->paddr = PA_PFN2PA(pte->ppn) | VA_POFS(req->vaddr);
if (write) {
if (!(pte->xwe & MODE2MASK(mode))) {
// declare the instruction access fault
fault(req->vaddr, MM_STAT_WR_MASK | MM_STAT_ACV_MASK |
(pte->fonw ? MM_STAT_FONW_MASK : 0),
req->xc);
write_acv++;
return DTB_Fault_Fault;
}
if (pte->fonw) {
fault(req->vaddr, MM_STAT_WR_MASK | MM_STAT_FONW_MASK,
req->xc);
write_acv++;
return DTB_Fault_Fault;
}
} else {
if (!(pte->xre & MODE2MASK(mode))) {
fault(req->vaddr,
MM_STAT_ACV_MASK |
(pte->fonr ? MM_STAT_FONR_MASK : 0),
req->xc);
read_acv++;
return DTB_Acv_Fault;
}
if (pte->fonr) {
fault(req->vaddr, MM_STAT_FONR_MASK, req->xc);
read_acv++;
return DTB_Fault_Fault;
}
}
}
if (write)
write_hits++;
else
read_hits++;
}
// check that the physical address is ok (catch bad physical addresses)
if (req->paddr & ~PA_IMPL_MASK)
return Machine_Check_Fault;
checkCacheability(req);
return No_Fault;
}
AlphaISA::PTE &
AlphaTLB::index(bool advance)
{
AlphaISA::PTE *pte = &table[nlu];
if (advance)
nextnlu();
return *pte;
}
DEFINE_SIM_OBJECT_CLASS_NAME("AlphaTLB", AlphaTLB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaITB)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaITB)
INIT_PARAM_DFLT(size, "TLB size", 48)
END_INIT_SIM_OBJECT_PARAMS(AlphaITB)
CREATE_SIM_OBJECT(AlphaITB)
{
return new AlphaITB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaITB", AlphaITB)
BEGIN_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
Param<int> size;
END_DECLARE_SIM_OBJECT_PARAMS(AlphaDTB)
BEGIN_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
INIT_PARAM_DFLT(size, "TLB size", 64)
END_INIT_SIM_OBJECT_PARAMS(AlphaDTB)
CREATE_SIM_OBJECT(AlphaDTB)
{
return new AlphaDTB(getInstanceName(), size);
}
REGISTER_SIM_OBJECT("AlphaDTB", AlphaDTB)