gem5/src/cpu/simple/base.cc
Nathan Binkert abc76f20cb Major changes to how SimObjects are created and initialized. Almost all
creation and initialization now happens in python.  Parameter objects
are generated and initialized by python.  The .ini file is now solely for
debugging purposes and is not used in construction of the objects in any
way.

--HG--
extra : convert_revision : 7e722873e417cb3d696f2e34c35ff488b7bff4ed
2007-07-23 21:51:38 -07:00

512 lines
14 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/utility.hh"
#include "arch/faults.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/loader/symtab.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/stats/events.hh"
#include "base/trace.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/simple/base.hh"
#include "cpu/simple_thread.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "cpu/thread_context.hh"
#include "mem/packet.hh"
#include "sim/byteswap.hh"
#include "sim/debug.hh"
#include "sim/host.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
#if FULL_SYSTEM
#include "arch/kernel_stats.hh"
#include "arch/stacktrace.hh"
#include "arch/tlb.hh"
#include "arch/vtophys.hh"
#include "base/remote_gdb.hh"
#else // !FULL_SYSTEM
#include "mem/mem_object.hh"
#endif // FULL_SYSTEM
using namespace std;
using namespace TheISA;
BaseSimpleCPU::BaseSimpleCPU(Params *p)
: BaseCPU(p), traceData(NULL), thread(NULL), predecoder(NULL)
{
#if FULL_SYSTEM
thread = new SimpleThread(this, 0, p->system, p->itb, p->dtb);
#else
thread = new SimpleThread(this, /* thread_num */ 0, p->process,
/* asid */ 0);
#endif // !FULL_SYSTEM
thread->setStatus(ThreadContext::Unallocated);
tc = thread->getTC();
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
threadContexts.push_back(tc);
fetchOffset = 0;
stayAtPC = false;
}
BaseSimpleCPU::~BaseSimpleCPU()
{
}
void
BaseSimpleCPU::deallocateContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::haltContext(int thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numMemRefs
.name(name() + ".num_refs")
.desc("Number of memory references")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
}
void
BaseSimpleCPU::resetStats()
{
// startNumInst = numInst;
// notIdleFraction = (_status != Idle);
}
void
BaseSimpleCPU::serialize(ostream &os)
{
BaseCPU::serialize(os);
// SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc.0", name()));
thread->serialize(os);
}
void
BaseSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
BaseCPU::unserialize(cp, section);
// UNSERIALIZE_SCALAR(inst);
thread->unserialize(cp, csprintf("%s.xc.0", section));
}
void
change_thread_state(int thread_number, int activate, int priority)
{
}
Fault
BaseSimpleCPU::copySrcTranslate(Addr src)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
if (fault == NoFault) {
thread->copySrcAddr = src;
thread->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
thread->copySrcAddr = 0;
thread->copySrcPhysAddr = 0;
}
return fault;
#else
return NoFault;
#endif
}
Fault
BaseSimpleCPU::copy(Addr dest)
{
#if 0
static bool no_warn = true;
int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(thread->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = thread->copySrcPhysAddr;
thread->mem->read(memReq, data);
memReq->paddr = dest_addr;
thread->mem->write(memReq, data);
if (dcacheInterface) {
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = thread->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
dcacheInterface->access(memReq);
}
}
else
assert(!fault->isAlignmentFault());
return fault;
#else
panic("copy not implemented");
return NoFault;
#endif
}
#if FULL_SYSTEM
Addr
BaseSimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(tc, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
BaseSimpleCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (thread->status() == ThreadContext::Suspended) {
DPRINTF(Quiesce,"Suspended Processor awoke\n");
thread->activate();
}
}
#endif // FULL_SYSTEM
void
BaseSimpleCPU::checkForInterrupts()
{
#if FULL_SYSTEM
if (check_interrupts(tc)) {
Fault interrupt = interrupts.getInterrupt(tc);
if (interrupt != NoFault) {
interrupts.updateIntrInfo(tc);
interrupt->invoke(tc);
}
}
#endif
}
Fault
BaseSimpleCPU::setupFetchRequest(Request *req)
{
Addr threadPC = thread->readPC();
// set up memory request for instruction fetch
#if ISA_HAS_DELAY_SLOT
DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p NNPC:%08p\n",threadPC,
thread->readNextPC(),thread->readNextNPC());
#else
DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p\n",threadPC,
thread->readNextPC());
#endif
Addr fetchPC = (threadPC & PCMask) + fetchOffset;
req->setVirt(0, fetchPC, sizeof(MachInst), 0, threadPC);
Fault fault = thread->translateInstReq(req);
return fault;
}
void
BaseSimpleCPU::preExecute()
{
// maintain $r0 semantics
thread->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
thread->setFloatReg(ZeroReg, 0.0);
#endif // ALPHA_ISA
// keep an instruction count
numInst++;
numInsts++;
thread->funcExeInst++;
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
// decode the instruction
inst = gtoh(inst);
//If we're not in the middle of a macro instruction
if (!curMacroStaticInst) {
StaticInstPtr instPtr = NULL;
//Predecode, ie bundle up an ExtMachInst
//This should go away once the constructor can be set up properly
predecoder.setTC(thread->getTC());
//If more fetch data is needed, pass it in.
Addr fetchPC = (thread->readPC() & PCMask) + fetchOffset;
//if(predecoder.needMoreBytes())
predecoder.moreBytes(thread->readPC(), fetchPC, inst);
//else
// predecoder.process();
//If an instruction is ready, decode it. Otherwise, we'll have to
//fetch beyond the MachInst at the current pc.
if (predecoder.extMachInstReady()) {
#if THE_ISA == X86_ISA
thread->setNextPC(thread->readPC() + predecoder.getInstSize());
#endif // X86_ISA
stayAtPC = false;
instPtr = StaticInst::decode(predecoder.getExtMachInst(),
thread->readPC());
} else {
stayAtPC = true;
fetchOffset += sizeof(MachInst);
}
//If we decoded an instruction and it's microcoded, start pulling
//out micro ops
if (instPtr && instPtr->isMacroop()) {
curMacroStaticInst = instPtr;
curStaticInst = curMacroStaticInst->
fetchMicroop(thread->readMicroPC());
} else {
curStaticInst = instPtr;
}
} else {
//Read the next micro op from the macro op
curStaticInst = curMacroStaticInst->
fetchMicroop(thread->readMicroPC());
}
//If we decoded an instruction this "tick", record information about it.
if(curStaticInst)
{
#if TRACING_ON
traceData = Trace::getInstRecord(curTick, tc, curStaticInst,
thread->readPC());
DPRINTF(Decode,"Decode: Decoded %s instruction: 0x%x\n",
curStaticInst->getName(), curStaticInst->machInst);
#endif // TRACING_ON
#if FULL_SYSTEM
thread->setInst(inst);
#endif // FULL_SYSTEM
}
}
void
BaseSimpleCPU::postExecute()
{
#if FULL_SYSTEM
if (thread->profile) {
bool usermode = TheISA::inUserMode(tc);
thread->profilePC = usermode ? 1 : thread->readPC();
StaticInstPtr si(inst, thread->readPC());
ProfileNode *node = thread->profile->consume(tc, si);
if (node)
thread->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
traceFunctions(thread->readPC());
if (traceData) {
traceData->dump();
delete traceData;
traceData = NULL;
}
}
void
BaseSimpleCPU::advancePC(Fault fault)
{
//Since we're moving to a new pc, zero out the offset
fetchOffset = 0;
if (fault != NoFault) {
curMacroStaticInst = StaticInst::nullStaticInstPtr;
fault->invoke(tc);
thread->setMicroPC(0);
thread->setNextMicroPC(1);
} else {
//If we're at the last micro op for this instruction
if (curStaticInst && curStaticInst->isLastMicroop()) {
//We should be working with a macro op
assert(curMacroStaticInst);
//Close out this macro op, and clean up the
//microcode state
curMacroStaticInst = StaticInst::nullStaticInstPtr;
thread->setMicroPC(0);
thread->setNextMicroPC(1);
}
//If we're still in a macro op
if (curMacroStaticInst) {
//Advance the micro pc
thread->setMicroPC(thread->readNextMicroPC());
//Advance the "next" micro pc. Note that there are no delay
//slots, and micro ops are "word" addressed.
thread->setNextMicroPC(thread->readNextMicroPC() + 1);
} else {
// go to the next instruction
thread->setPC(thread->readNextPC());
thread->setNextPC(thread->readNextNPC());
thread->setNextNPC(thread->readNextNPC() + sizeof(MachInst));
assert(thread->readNextPC() != thread->readNextNPC());
}
}
#if FULL_SYSTEM
Addr oldpc;
do {
oldpc = thread->readPC();
system->pcEventQueue.service(tc);
} while (oldpc != thread->readPC());
#endif
}