/* * Copyright (c) 2002-2005 The Regents of The University of Michigan * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Steve Reinhardt */ #include "arch/utility.hh" #include "arch/faults.hh" #include "base/cprintf.hh" #include "base/inifile.hh" #include "base/loader/symtab.hh" #include "base/misc.hh" #include "base/pollevent.hh" #include "base/range.hh" #include "base/stats/events.hh" #include "base/trace.hh" #include "cpu/base.hh" #include "cpu/exetrace.hh" #include "cpu/profile.hh" #include "cpu/simple/base.hh" #include "cpu/simple_thread.hh" #include "cpu/smt.hh" #include "cpu/static_inst.hh" #include "cpu/thread_context.hh" #include "mem/packet.hh" #include "sim/byteswap.hh" #include "sim/debug.hh" #include "sim/host.hh" #include "sim/sim_events.hh" #include "sim/sim_object.hh" #include "sim/stats.hh" #include "sim/system.hh" #if FULL_SYSTEM #include "arch/kernel_stats.hh" #include "arch/stacktrace.hh" #include "arch/tlb.hh" #include "arch/vtophys.hh" #include "base/remote_gdb.hh" #else // !FULL_SYSTEM #include "mem/mem_object.hh" #endif // FULL_SYSTEM using namespace std; using namespace TheISA; BaseSimpleCPU::BaseSimpleCPU(Params *p) : BaseCPU(p), traceData(NULL), thread(NULL), predecoder(NULL) { #if FULL_SYSTEM thread = new SimpleThread(this, 0, p->system, p->itb, p->dtb); #else thread = new SimpleThread(this, /* thread_num */ 0, p->process, /* asid */ 0); #endif // !FULL_SYSTEM thread->setStatus(ThreadContext::Unallocated); tc = thread->getTC(); numInst = 0; startNumInst = 0; numLoad = 0; startNumLoad = 0; lastIcacheStall = 0; lastDcacheStall = 0; threadContexts.push_back(tc); fetchOffset = 0; stayAtPC = false; } BaseSimpleCPU::~BaseSimpleCPU() { } void BaseSimpleCPU::deallocateContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } void BaseSimpleCPU::haltContext(int thread_num) { // for now, these are equivalent suspendContext(thread_num); } void BaseSimpleCPU::regStats() { using namespace Stats; BaseCPU::regStats(); numInsts .name(name() + ".num_insts") .desc("Number of instructions executed") ; numMemRefs .name(name() + ".num_refs") .desc("Number of memory references") ; notIdleFraction .name(name() + ".not_idle_fraction") .desc("Percentage of non-idle cycles") ; idleFraction .name(name() + ".idle_fraction") .desc("Percentage of idle cycles") ; icacheStallCycles .name(name() + ".icache_stall_cycles") .desc("ICache total stall cycles") .prereq(icacheStallCycles) ; dcacheStallCycles .name(name() + ".dcache_stall_cycles") .desc("DCache total stall cycles") .prereq(dcacheStallCycles) ; icacheRetryCycles .name(name() + ".icache_retry_cycles") .desc("ICache total retry cycles") .prereq(icacheRetryCycles) ; dcacheRetryCycles .name(name() + ".dcache_retry_cycles") .desc("DCache total retry cycles") .prereq(dcacheRetryCycles) ; idleFraction = constant(1.0) - notIdleFraction; } void BaseSimpleCPU::resetStats() { // startNumInst = numInst; // notIdleFraction = (_status != Idle); } void BaseSimpleCPU::serialize(ostream &os) { BaseCPU::serialize(os); // SERIALIZE_SCALAR(inst); nameOut(os, csprintf("%s.xc.0", name())); thread->serialize(os); } void BaseSimpleCPU::unserialize(Checkpoint *cp, const string §ion) { BaseCPU::unserialize(cp, section); // UNSERIALIZE_SCALAR(inst); thread->unserialize(cp, csprintf("%s.xc.0", section)); } void change_thread_state(int thread_number, int activate, int priority) { } Fault BaseSimpleCPU::copySrcTranslate(Addr src) { #if 0 static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); int offset = src & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (src & PageMask) != ((src + blk_size) & PageMask) && (src >> 40) != 0xfffffc) { warn("Copied block source spans pages %x.", src); no_warn = false; } memReq->reset(src & ~(blk_size - 1), blk_size); // translate to physical address Fault fault = thread->translateDataReadReq(req); if (fault == NoFault) { thread->copySrcAddr = src; thread->copySrcPhysAddr = memReq->paddr + offset; } else { assert(!fault->isAlignmentFault()); thread->copySrcAddr = 0; thread->copySrcPhysAddr = 0; } return fault; #else return NoFault; #endif } Fault BaseSimpleCPU::copy(Addr dest) { #if 0 static bool no_warn = true; int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64; // Only support block sizes of 64 atm. assert(blk_size == 64); uint8_t data[blk_size]; //assert(thread->copySrcAddr); int offset = dest & (blk_size - 1); // Make sure block doesn't span page if (no_warn && (dest & PageMask) != ((dest + blk_size) & PageMask) && (dest >> 40) != 0xfffffc) { no_warn = false; warn("Copied block destination spans pages %x. ", dest); } memReq->reset(dest & ~(blk_size -1), blk_size); // translate to physical address Fault fault = thread->translateDataWriteReq(req); if (fault == NoFault) { Addr dest_addr = memReq->paddr + offset; // Need to read straight from memory since we have more than 8 bytes. memReq->paddr = thread->copySrcPhysAddr; thread->mem->read(memReq, data); memReq->paddr = dest_addr; thread->mem->write(memReq, data); if (dcacheInterface) { memReq->cmd = Copy; memReq->completionEvent = NULL; memReq->paddr = thread->copySrcPhysAddr; memReq->dest = dest_addr; memReq->size = 64; memReq->time = curTick; memReq->flags &= ~INST_READ; dcacheInterface->access(memReq); } } else assert(!fault->isAlignmentFault()); return fault; #else panic("copy not implemented"); return NoFault; #endif } #if FULL_SYSTEM Addr BaseSimpleCPU::dbg_vtophys(Addr addr) { return vtophys(tc, addr); } #endif // FULL_SYSTEM #if FULL_SYSTEM void BaseSimpleCPU::post_interrupt(int int_num, int index) { BaseCPU::post_interrupt(int_num, index); if (thread->status() == ThreadContext::Suspended) { DPRINTF(Quiesce,"Suspended Processor awoke\n"); thread->activate(); } } #endif // FULL_SYSTEM void BaseSimpleCPU::checkForInterrupts() { #if FULL_SYSTEM if (check_interrupts(tc)) { Fault interrupt = interrupts.getInterrupt(tc); if (interrupt != NoFault) { interrupts.updateIntrInfo(tc); interrupt->invoke(tc); } } #endif } Fault BaseSimpleCPU::setupFetchRequest(Request *req) { Addr threadPC = thread->readPC(); // set up memory request for instruction fetch #if ISA_HAS_DELAY_SLOT DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p NNPC:%08p\n",threadPC, thread->readNextPC(),thread->readNextNPC()); #else DPRINTF(Fetch,"Fetch: PC:%08p NPC:%08p\n",threadPC, thread->readNextPC()); #endif Addr fetchPC = (threadPC & PCMask) + fetchOffset; req->setVirt(0, fetchPC, sizeof(MachInst), 0, threadPC); Fault fault = thread->translateInstReq(req); return fault; } void BaseSimpleCPU::preExecute() { // maintain $r0 semantics thread->setIntReg(ZeroReg, 0); #if THE_ISA == ALPHA_ISA thread->setFloatReg(ZeroReg, 0.0); #endif // ALPHA_ISA // keep an instruction count numInst++; numInsts++; thread->funcExeInst++; // check for instruction-count-based events comInstEventQueue[0]->serviceEvents(numInst); // decode the instruction inst = gtoh(inst); //If we're not in the middle of a macro instruction if (!curMacroStaticInst) { StaticInstPtr instPtr = NULL; //Predecode, ie bundle up an ExtMachInst //This should go away once the constructor can be set up properly predecoder.setTC(thread->getTC()); //If more fetch data is needed, pass it in. Addr fetchPC = (thread->readPC() & PCMask) + fetchOffset; //if(predecoder.needMoreBytes()) predecoder.moreBytes(thread->readPC(), fetchPC, inst); //else // predecoder.process(); //If an instruction is ready, decode it. Otherwise, we'll have to //fetch beyond the MachInst at the current pc. if (predecoder.extMachInstReady()) { #if THE_ISA == X86_ISA thread->setNextPC(thread->readPC() + predecoder.getInstSize()); #endif // X86_ISA stayAtPC = false; instPtr = StaticInst::decode(predecoder.getExtMachInst(), thread->readPC()); } else { stayAtPC = true; fetchOffset += sizeof(MachInst); } //If we decoded an instruction and it's microcoded, start pulling //out micro ops if (instPtr && instPtr->isMacroop()) { curMacroStaticInst = instPtr; curStaticInst = curMacroStaticInst-> fetchMicroop(thread->readMicroPC()); } else { curStaticInst = instPtr; } } else { //Read the next micro op from the macro op curStaticInst = curMacroStaticInst-> fetchMicroop(thread->readMicroPC()); } //If we decoded an instruction this "tick", record information about it. if(curStaticInst) { #if TRACING_ON traceData = Trace::getInstRecord(curTick, tc, curStaticInst, thread->readPC()); DPRINTF(Decode,"Decode: Decoded %s instruction: 0x%x\n", curStaticInst->getName(), curStaticInst->machInst); #endif // TRACING_ON #if FULL_SYSTEM thread->setInst(inst); #endif // FULL_SYSTEM } } void BaseSimpleCPU::postExecute() { #if FULL_SYSTEM if (thread->profile) { bool usermode = TheISA::inUserMode(tc); thread->profilePC = usermode ? 1 : thread->readPC(); StaticInstPtr si(inst, thread->readPC()); ProfileNode *node = thread->profile->consume(tc, si); if (node) thread->profileNode = node; } #endif if (curStaticInst->isMemRef()) { numMemRefs++; } if (curStaticInst->isLoad()) { ++numLoad; comLoadEventQueue[0]->serviceEvents(numLoad); } traceFunctions(thread->readPC()); if (traceData) { traceData->dump(); delete traceData; traceData = NULL; } } void BaseSimpleCPU::advancePC(Fault fault) { //Since we're moving to a new pc, zero out the offset fetchOffset = 0; if (fault != NoFault) { curMacroStaticInst = StaticInst::nullStaticInstPtr; fault->invoke(tc); thread->setMicroPC(0); thread->setNextMicroPC(1); } else { //If we're at the last micro op for this instruction if (curStaticInst && curStaticInst->isLastMicroop()) { //We should be working with a macro op assert(curMacroStaticInst); //Close out this macro op, and clean up the //microcode state curMacroStaticInst = StaticInst::nullStaticInstPtr; thread->setMicroPC(0); thread->setNextMicroPC(1); } //If we're still in a macro op if (curMacroStaticInst) { //Advance the micro pc thread->setMicroPC(thread->readNextMicroPC()); //Advance the "next" micro pc. Note that there are no delay //slots, and micro ops are "word" addressed. thread->setNextMicroPC(thread->readNextMicroPC() + 1); } else { // go to the next instruction thread->setPC(thread->readNextPC()); thread->setNextPC(thread->readNextNPC()); thread->setNextNPC(thread->readNextNPC() + sizeof(MachInst)); assert(thread->readNextPC() != thread->readNextNPC()); } } #if FULL_SYSTEM Addr oldpc; do { oldpc = thread->readPC(); system->pcEventQueue.service(tc); } while (oldpc != thread->readPC()); #endif }