gem5/cpu/simple/cpu.hh
Kevin Lim 70b35bab57 Changes to put all the misc regs within the misc reg file. This includes the FPCR, Uniq, lock flag, lock addr, and IPRs.
They are now accessed by calling readMiscReg()/setMiscReg() on the XC.  Old IPR accesses are supported by using readMiscRegWithEffect() and setMiscRegWithEffect() (names may change in the future).

arch/alpha/alpha_memory.cc:
    Change accesses to IPR to go through the XC.
arch/alpha/ev5.cc:
    Change accesses for IPRs to go through the misc regs.
arch/alpha/isa/decoder.isa:
    Change accesses to IPRs to go through the misc regs.  readIpr() and setIpr() are now changed to calls to readMiscRegWithEffect() and setMiscRegWithEffect().
arch/alpha/isa/fp.isa:
    Change accesses to IPRs and Fpcr to go through the misc regs.
arch/alpha/isa/main.isa:
    Add support for all misc regs being accessed through readMiscReg() and setMiscReg().  Instead of readUniq and readFpcr, they are replaced by calls with Uniq_DepTag and Fpcr_DepTag passed in as the register index.
arch/alpha/isa_traits.hh:
    Change the MiscRegFile to a class that handles all accesses to MiscRegs, which in Alpha include the FPCR, Uniq, Lock Addr, Lock Flag, and IPRs.
    Two flavors of accesses are supported: normal register reads/writes, and reads/writes with effect.  The latter are basically the original read/write IPR functions, while the former are normal reads/writes.

    The lock flag and lock addr registers are added to the dependence tags in order to support being accessed through the misc regs.
arch/alpha/stacktrace.cc:
cpu/simple/cpu.cc:
dev/sinic.cc:
    Change accesses to the IPRs to go through the XC.
arch/alpha/vtophys.cc:
    Change access to the IPR to go through the XC.
arch/isa_parser.py:
    Change generation of code for control registers to use the readMiscReg and setMiscReg functions.
base/remote_gdb.cc:
    Change accesses to the IPR to go through the XC.
cpu/exec_context.hh:
    Use the miscRegs to access the lock addr, lock flag, and other misc registers.
cpu/o3/alpha_cpu.hh:
cpu/simple/cpu.hh:
    Support interface for reading and writing misc registers, which replaces readUniq, readFpcr, readIpr, and their set functions.
cpu/o3/alpha_cpu_impl.hh:
    Change accesses to the IPRs to go through the miscRegs.
    For now comment out some of the accesses to the misc regs until the proxy exec context is completed.
cpu/o3/alpha_dyn_inst.hh:
    Change accesses to misc regs to use readMiscReg and setMiscReg.
cpu/o3/alpha_dyn_inst_impl.hh:
    Remove old misc reg accessors.
cpu/o3/cpu.cc:
    Comment out old misc reg accesses until the proxy exec context is completed.
cpu/o3/cpu.hh:
    Change accesses to the misc regs.
cpu/o3/regfile.hh:
    Remove old access methods for the misc regs, replace them with readMiscReg and setMiscReg.  They are dummy functions for now until the proxy exec context is completed.
kern/kernel_stats.cc:
kern/system_events.cc:
    Have accesses to the IPRs go through the XC.
kern/tru64/tru64.hh:
    Have accesses to the misc regs use the new access methods.

--HG--
extra : convert_revision : e32e0a3fe99522e17294bbe106ff5591cb1a9d76
2006-02-27 11:44:35 -05:00

360 lines
9.7 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/static_inst.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
class MemInterface;
class Checkpoint;
namespace Trace {
class InstRecord;
}
class SimpleCPU : public BaseCPU
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
public:
// main simulation loop (one cycle)
void tick();
virtual void init();
private:
struct TickEvent : public Event
{
SimpleCPU *cpu;
int width;
TickEvent(SimpleCPU *c, int w);
void process();
const char *description();
};
TickEvent tickEvent;
/// Schedule tick event, regardless of its current state.
void scheduleTickEvent(int numCycles)
{
if (tickEvent.squashed())
tickEvent.reschedule(curTick + cycles(numCycles));
else if (!tickEvent.scheduled())
tickEvent.schedule(curTick + cycles(numCycles));
}
/// Unschedule tick event, regardless of its current state.
void unscheduleTickEvent()
{
if (tickEvent.scheduled())
tickEvent.squash();
}
private:
Trace::InstRecord *traceData;
public:
//
enum Status {
Running,
Idle,
IcacheMissStall,
IcacheMissComplete,
DcacheMissStall,
DcacheMissSwitch,
SwitchedOut
};
private:
Status _status;
public:
void post_interrupt(int int_num, int index);
void zero_fill_64(Addr addr) {
static int warned = 0;
if (!warned) {
warn ("WH64 is not implemented");
warned = 1;
}
};
public:
struct Params : public BaseCPU::Params
{
MemInterface *icache_interface;
MemInterface *dcache_interface;
int width;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
FunctionalMemory *mem;
#else
Process *process;
#endif
};
SimpleCPU(Params *params);
virtual ~SimpleCPU();
public:
// execution context
ExecContext *xc;
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
// L1 instruction cache
MemInterface *icacheInterface;
// L1 data cache
MemInterface *dcacheInterface;
// current instruction
MachInst inst;
// Refcounted pointer to the one memory request.
MemReqPtr memReq;
// Pointer to the sampler that is telling us to switchover.
// Used to signal the completion of the pipe drain and schedule
// the next switchover
Sampler *sampler;
StaticInstPtr curStaticInst;
class CacheCompletionEvent : public Event
{
private:
SimpleCPU *cpu;
public:
CacheCompletionEvent(SimpleCPU *_cpu);
virtual void process();
virtual const char *description();
};
CacheCompletionEvent cacheCompletionEvent;
Status status() const { return _status; }
virtual void activateContext(int thread_num, int delay);
virtual void suspendContext(int thread_num);
virtual void deallocateContext(int thread_num);
virtual void haltContext(int thread_num);
// statistics
virtual void regStats();
virtual void resetStats();
// number of simulated instructions
Counter numInst;
Counter startNumInst;
Stats::Scalar<> numInsts;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated memory references
Stats::Scalar<> numMemRefs;
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
// number of idle cycles
Stats::Average<> notIdleFraction;
Stats::Formula idleFraction;
// number of cycles stalled for I-cache misses
Stats::Scalar<> icacheStallCycles;
Counter lastIcacheStall;
// number of cycles stalled for D-cache misses
Stats::Scalar<> dcacheStallCycles;
Counter lastDcacheStall;
void processCacheCompletion();
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(const StaticInst *si, int idx)
{
return xc->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return xc->readFloatRegInt(reg_idx);
}
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
xc->setIntReg(si->destRegIdx(idx), val);
}
void setFloatRegSingle(const StaticInst *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegSingle(reg_idx, val);
}
void setFloatRegDouble(const StaticInst *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegDouble(reg_idx, val);
}
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
xc->setFloatRegInt(reg_idx, val);
}
uint64_t readPC() { return xc->readPC(); }
void setNextPC(uint64_t val) { xc->setNextPC(val); }
MiscReg readMiscReg(int misc_reg)
{
return xc->readMiscReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return xc->readMiscRegWithEffect(misc_reg, fault);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
return xc->setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return xc->setMiscRegWithEffect(misc_reg, val);
}
#if FULL_SYSTEM
Fault hwrei() { return xc->hwrei(); }
int readIntrFlag() { return xc->readIntrFlag(); }
void setIntrFlag(int val) { xc->setIntrFlag(val); }
bool inPalMode() { return xc->inPalMode(); }
void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
#else
void syscall() { xc->syscall(); }
#endif
bool misspeculating() { return xc->misspeculating(); }
ExecContext *xcBase() { return xc; }
};
#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__