gem5/cpu/cpu_exec_context.hh
Gabe Black 8e4ec55703 Changed the floating point register file into a class with appropriate accessor functions. The width of the floating point register to access can be specified, and if not, it will be accessed at its "natural" width. That is, the width of each individual register. Also, the functions which access the bit representation of floating point registers can use the blahblahBits functions now instead of blahblahInt.
arch/alpha/arguments.cc:
    Renamed readFloatRegInt to readFloatRegBits
arch/alpha/ev5.cc:
    Removed the Double from setFloatRegDouble
arch/alpha/registerfile.hh:
    Changed the floating point register file from a union of arrays to a class with appropriate accessor functions. The interface is necessary for SPARC.
arch/alpha/types.hh:
    Changed the FloatReg type from a union of uint64_t and double to a double, and defined a new type FloatRegBits which is a uint64_t and is used to return the bits which compose a floating point register rather than the value of the register.
arch/isa_parser.py:
    Adjusted the makeRead and makeWrite functions to generate the new versions of readFloatReg and setFloatReg.
base/remote_gdb.cc:
kern/tru64/tru64.hh:
    Replaced setFloatRegInt with setFloatRegBits
cpu/cpu_exec_context.cc:
    Removed the duplicated code for setting the floating point registers, and renamed the function to setFloatRegBits and readFloatRegBits.
cpu/cpu_exec_context.hh:
cpu/exec_context.hh:
cpu/o3/alpha_cpu_impl.hh:
cpu/o3/alpha_dyn_inst.hh:
cpu/o3/cpu.cc:
cpu/o3/cpu.hh:
cpu/o3/regfile.hh:
cpu/ozone/cpu.hh:
cpu/simple/cpu.hh:
    Implemented the new versions of the floating point read and set functions.
cpu/simple/cpu.cc:
    Replaced setFloatRegDouble with setFloatReg

--HG--
extra : convert_revision : 3dad06224723137f6033c335fb8f6395636767f2
2006-03-14 15:55:00 -05:00

527 lines
14 KiB
C++

/*
* Copyright (c) 2001-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_CPU_EXEC_CONTEXT_HH__
#define __CPU_CPU_EXEC_CONTEXT_HH__
#include "arch/isa_traits.hh"
#include "config/full_system.hh"
#include "cpu/exec_context.hh"
#include "mem/physical.hh"
#include "mem/request.hh"
#include "sim/byteswap.hh"
#include "sim/eventq.hh"
#include "sim/host.hh"
#include "sim/serialize.hh"
class BaseCPU;
#if FULL_SYSTEM
#include "sim/system.hh"
#include "arch/tlb.hh"
class FunctionProfile;
class ProfileNode;
class MemoryController;
#else // !FULL_SYSTEM
#include "sim/process.hh"
class TranslatingPort;
#endif // FULL_SYSTEM
//
// The CPUExecContext object represents a functional context for
// instruction execution. It incorporates everything required for
// architecture-level functional simulation of a single thread.
//
class CPUExecContext
{
protected:
typedef TheISA::RegFile RegFile;
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegBits FloatRegBits;
public:
typedef ExecContext::Status Status;
private:
Status _status;
public:
Status status() const { return _status; }
void setStatus(Status newStatus) { _status = newStatus; }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1);
/// Set the status to Suspended.
void suspend();
/// Set the status to Unallocated.
void deallocate();
/// Set the status to Halted.
void halt();
protected:
RegFile regs; // correct-path register context
public:
// pointer to CPU associated with this context
BaseCPU *cpu;
ProxyExecContext<CPUExecContext> *proxy;
// Current instruction
MachInst inst;
// Index of hardware thread context on the CPU that this represents.
int thread_num;
// ID of this context w.r.t. the System or Process object to which
// it belongs. For full-system mode, this is the system CPU ID.
int cpu_id;
Tick lastActivate;
Tick lastSuspend;
System *system;
/// Port that syscalls can use to access memory (provides translation step).
TranslatingPort *port;
// Memory *mem;
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
// the following two fields are redundant, since we can always
// look them up through the system pointer, but we'll leave them
// here for now for convenience
MemoryController *memctrl;
// PhysicalMemory *physmem;
FunctionProfile *profile;
ProfileNode *profileNode;
Addr profilePC;
void dumpFuncProfile();
/** Event for timing out quiesce instruction */
struct EndQuiesceEvent : public Event
{
/** A pointer to the execution context that is quiesced */
CPUExecContext *cpuXC;
EndQuiesceEvent(CPUExecContext *_cpuXC);
/** Event process to occur at interrupt*/
virtual void process();
/** Event description */
virtual const char *description();
};
EndQuiesceEvent quiesceEvent;
Event *getQuiesceEvent() { return &quiesceEvent; }
Tick readLastActivate() { return lastActivate; }
Tick readLastSuspend() { return lastSuspend; }
void profileClear();
void profileSample();
#else
Process *process;
// Address space ID. Note that this is used for TIMING cache
// simulation only; all functional memory accesses should use
// one of the FunctionalMemory pointers above.
short asid;
#endif
/**
* Temporary storage to pass the source address from copy_load to
* copy_store.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcAddr;
/**
* Temp storage for the physical source address of a copy.
* @todo Remove this temporary when we have a better way to do it.
*/
Addr copySrcPhysAddr;
/*
* number of executed instructions, for matching with syscall trace
* points in EIO files.
*/
Counter func_exe_inst;
//
// Count failed store conditionals so we can warn of apparent
// application deadlock situations.
unsigned storeCondFailures;
// constructor: initialize context from given process structure
#if FULL_SYSTEM
CPUExecContext(BaseCPU *_cpu, int _thread_num, System *_system,
AlphaITB *_itb, AlphaDTB *_dtb, FunctionalMemory *_dem);
#else
CPUExecContext(BaseCPU *_cpu, int _thread_num, Process *_process, int _asid, Port *mem_port);
// Constructor to use XC to pass reg file around. Not used for anything
// else.
CPUExecContext(RegFile *regFile);
#endif
virtual ~CPUExecContext();
virtual void takeOverFrom(ExecContext *oldContext);
void regStats(const std::string &name);
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
TranslatingPort *getMemPort() { return port; }
BaseCPU *getCpuPtr() { return cpu; }
ExecContext *getProxy() { return proxy; }
int getThreadNum() { return thread_num; }
#if FULL_SYSTEM
System *getSystemPtr() { return system; }
PhysicalMemory *getPhysMemPtr() { return physmem; }
AlphaITB *getITBPtr() { return itb; }
AlphaDTB *getDTBPtr() { return dtb; }
int getInstAsid() { return regs.instAsid(); }
int getDataAsid() { return regs.dataAsid(); }
Fault translateInstReq(CpuRequestPtr &req)
{
return itb->translate(req);
}
Fault translateDataReadReq(CpuRequestPtr &req)
{
return dtb->translate(req, false);
}
Fault translateDataWriteReq(CpuRequestPtr &req)
{
return dtb->translate(req, true);
}
#else
Process *getProcessPtr() { return process; }
int getInstAsid() { return asid; }
int getDataAsid() { return asid; }
Fault translateInstReq(CpuRequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataReadReq(CpuRequestPtr &req)
{
return process->pTable->translate(req);
}
Fault translateDataWriteReq(CpuRequestPtr &req)
{
return process->pTable->translate(req);
}
#endif
/*
template <class T>
Fault read(CpuRequestPtr &req, T &data)
{
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
if (req->flags & LOCKED) {
req->xc->setMiscReg(TheISA::Lock_Addr_DepTag, req->paddr);
req->xc->setMiscReg(TheISA::Lock_Flag_DepTag, true);
}
#endif
Fault error;
error = mem->prot_read(req->paddr, data, req->size);
data = LittleEndianGuest::gtoh(data);
return error;
}
template <class T>
Fault write(CpuRequestPtr &req, T &data)
{
#if FULL_SYSTEM && THE_ISA == ALPHA_ISA
ExecContext *xc;
// If this is a store conditional, act appropriately
if (req->flags & LOCKED) {
xc = req->xc;
if (req->flags & UNCACHEABLE) {
// Don't update result register (see stq_c in isa_desc)
req->result = 2;
xc->setStCondFailures(0);//Needed? [RGD]
} else {
bool lock_flag = xc->readMiscReg(TheISA::Lock_Flag_DepTag);
Addr lock_addr = xc->readMiscReg(TheISA::Lock_Addr_DepTag);
req->result = lock_flag;
if (!lock_flag ||
((lock_addr & ~0xf) != (req->paddr & ~0xf))) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
xc->setStCondFailures(xc->readStCondFailures() + 1);
if (((xc->readStCondFailures()) % 100000) == 0) {
std::cerr << "Warning: "
<< xc->readStCondFailures()
<< " consecutive store conditional failures "
<< "on cpu " << req->xc->readCpuId()
<< std::endl;
}
return NoFault;
}
else xc->setStCondFailures(0);
}
}
// Need to clear any locked flags on other proccessors for
// this address. Only do this for succsful Store Conditionals
// and all other stores (WH64?). Unsuccessful Store
// Conditionals would have returned above, and wouldn't fall
// through.
for (int i = 0; i < system->execContexts.size(); i++){
xc = system->execContexts[i];
if ((xc->readMiscReg(TheISA::Lock_Addr_DepTag) & ~0xf) ==
(req->paddr & ~0xf)) {
xc->setMiscReg(TheISA::Lock_Flag_DepTag, false);
}
}
#endif
return mem->prot_write(req->paddr, (T)htog(data), req->size);
}
*/
virtual bool misspeculating();
MachInst getInst() { return inst; }
void setInst(MachInst new_inst)
{
inst = new_inst;
}
Fault instRead(CpuRequestPtr &req)
{
panic("instRead not implemented");
// return funcPhysMem->read(req, inst);
return NoFault;
}
void setCpuId(int id) { cpu_id = id; }
int readCpuId() { return cpu_id; }
void copyArchRegs(ExecContext *xc);
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{
return regs.intRegFile[reg_idx];
}
FloatReg readFloatReg(int reg_idx, int width)
{
return regs.floatRegFile.readReg(reg_idx, width);
}
FloatReg readFloatReg(int reg_idx)
{
return regs.floatRegFile.readReg(reg_idx);
}
FloatRegBits readFloatRegBits(int reg_idx, int width)
{
return regs.floatRegFile.readRegBits(reg_idx, width);
}
FloatRegBits readFloatRegBits(int reg_idx)
{
return regs.floatRegFile.readRegBits(reg_idx);
}
void setIntReg(int reg_idx, uint64_t val)
{
regs.intRegFile[reg_idx] = val;
}
void setFloatReg(int reg_idx, FloatReg val, int width)
{
regs.floatRegFile.setReg(reg_idx, val, width);
}
void setFloatReg(int reg_idx, FloatReg val)
{
regs.floatRegFile.setReg(reg_idx, val);
}
void setFloatRegBits(int reg_idx, FloatRegBits val, int width)
{
regs.floatRegFile.setRegBits(reg_idx, val, width);
}
void setFloatRegBits(int reg_idx, FloatRegBits val)
{
regs.floatRegFile.setRegBits(reg_idx, val);
}
uint64_t readPC()
{
return regs.pc;
}
void setPC(uint64_t val)
{
regs.pc = val;
}
uint64_t readNextPC()
{
return regs.npc;
}
void setNextPC(uint64_t val)
{
regs.npc = val;
}
uint64_t readNextNPC()
{
return regs.nnpc;
}
void setNextNPC(uint64_t val)
{
regs.nnpc = val;
}
MiscReg readMiscReg(int misc_reg)
{
return regs.miscRegs.readReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return regs.miscRegs.readRegWithEffect(misc_reg, fault, proxy);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
return regs.miscRegs.setReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
return regs.miscRegs.setRegWithEffect(misc_reg, val, proxy);
}
unsigned readStCondFailures() { return storeCondFailures; }
void setStCondFailures(unsigned sc_failures)
{ storeCondFailures = sc_failures; }
void clearArchRegs() { memset(&regs, 0, sizeof(regs)); }
#if FULL_SYSTEM
int readIntrFlag() { return regs.intrflag; }
void setIntrFlag(int val) { regs.intrflag = val; }
Fault hwrei();
bool inPalMode() { return AlphaISA::PcPAL(regs.pc); }
bool simPalCheck(int palFunc);
#endif
#if !FULL_SYSTEM
TheISA::IntReg getSyscallArg(int i)
{
return regs.intRegFile[TheISA::ArgumentReg0 + i];
}
// used to shift args for indirect syscall
void setSyscallArg(int i, TheISA::IntReg val)
{
regs.intRegFile[TheISA::ArgumentReg0 + i] = val;
}
void setSyscallReturn(SyscallReturn return_value)
{
TheISA::setSyscallReturn(return_value, &regs);
}
void syscall()
{
process->syscall(proxy);
}
Counter readFuncExeInst() { return func_exe_inst; }
void setFuncExeInst(Counter new_val) { func_exe_inst = new_val; }
#endif
};
// for non-speculative execution context, spec_mode is always false
inline bool
CPUExecContext::misspeculating()
{
return false;
}
#endif // __CPU_CPU_EXEC_CONTEXT_HH__