8d80fd1477
--HG-- extra : convert_revision : 5b2f457401f8ff94fe39fe071288eb117814b7bb
346 lines
9.6 KiB
C++
346 lines
9.6 KiB
C++
/*
|
|
* Copyright (c) 2002-2005 The Regents of The University of Michigan
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met: redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer;
|
|
* redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution;
|
|
* neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
|
|
#define __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
|
|
|
|
#include "base/statistics.hh"
|
|
#include "config/full_system.hh"
|
|
#include "cpu/base.hh"
|
|
#include "cpu/exec_context.hh"
|
|
#include "cpu/pc_event.hh"
|
|
#include "cpu/sampler/sampler.hh"
|
|
#include "cpu/static_inst.hh"
|
|
#include "sim/eventq.hh"
|
|
|
|
// forward declarations
|
|
#if FULL_SYSTEM
|
|
class Processor;
|
|
class AlphaITB;
|
|
class AlphaDTB;
|
|
class PhysicalMemory;
|
|
|
|
class RemoteGDB;
|
|
class GDBListener;
|
|
|
|
#else
|
|
|
|
class Process;
|
|
|
|
#endif // FULL_SYSTEM
|
|
|
|
class MemInterface;
|
|
class Checkpoint;
|
|
|
|
namespace Trace {
|
|
class InstRecord;
|
|
}
|
|
|
|
class SimpleCPU : public BaseCPU
|
|
{
|
|
protected:
|
|
typedef TheISA::MachInst MachInst;
|
|
public:
|
|
// main simulation loop (one cycle)
|
|
void tick();
|
|
|
|
private:
|
|
struct TickEvent : public Event
|
|
{
|
|
SimpleCPU *cpu;
|
|
int width;
|
|
|
|
TickEvent(SimpleCPU *c, int w);
|
|
void process();
|
|
const char *description();
|
|
};
|
|
|
|
TickEvent tickEvent;
|
|
|
|
/// Schedule tick event, regardless of its current state.
|
|
void scheduleTickEvent(int numCycles)
|
|
{
|
|
if (tickEvent.squashed())
|
|
tickEvent.reschedule(curTick + cycles(numCycles));
|
|
else if (!tickEvent.scheduled())
|
|
tickEvent.schedule(curTick + cycles(numCycles));
|
|
}
|
|
|
|
/// Unschedule tick event, regardless of its current state.
|
|
void unscheduleTickEvent()
|
|
{
|
|
if (tickEvent.scheduled())
|
|
tickEvent.squash();
|
|
}
|
|
|
|
private:
|
|
Trace::InstRecord *traceData;
|
|
|
|
public:
|
|
//
|
|
enum Status {
|
|
Running,
|
|
Idle,
|
|
IcacheMissStall,
|
|
IcacheMissComplete,
|
|
DcacheMissStall,
|
|
DcacheMissSwitch,
|
|
SwitchedOut
|
|
};
|
|
|
|
private:
|
|
Status _status;
|
|
|
|
public:
|
|
void post_interrupt(int int_num, int index);
|
|
|
|
void zero_fill_64(Addr addr) {
|
|
static int warned = 0;
|
|
if (!warned) {
|
|
warn ("WH64 is not implemented");
|
|
warned = 1;
|
|
}
|
|
};
|
|
|
|
public:
|
|
struct Params : public BaseCPU::Params
|
|
{
|
|
MemInterface *icache_interface;
|
|
MemInterface *dcache_interface;
|
|
int width;
|
|
#if FULL_SYSTEM
|
|
AlphaITB *itb;
|
|
AlphaDTB *dtb;
|
|
FunctionalMemory *mem;
|
|
#else
|
|
Process *process;
|
|
#endif
|
|
};
|
|
SimpleCPU(Params *params);
|
|
virtual ~SimpleCPU();
|
|
|
|
public:
|
|
// execution context
|
|
ExecContext *xc;
|
|
|
|
void switchOut(Sampler *s);
|
|
void takeOverFrom(BaseCPU *oldCPU);
|
|
|
|
#if FULL_SYSTEM
|
|
Addr dbg_vtophys(Addr addr);
|
|
|
|
bool interval_stats;
|
|
#endif
|
|
|
|
// L1 instruction cache
|
|
MemInterface *icacheInterface;
|
|
|
|
// L1 data cache
|
|
MemInterface *dcacheInterface;
|
|
|
|
// current instruction
|
|
MachInst inst;
|
|
|
|
// Refcounted pointer to the one memory request.
|
|
MemReqPtr memReq;
|
|
|
|
// Pointer to the sampler that is telling us to switchover.
|
|
// Used to signal the completion of the pipe drain and schedule
|
|
// the next switchover
|
|
Sampler *sampler;
|
|
|
|
StaticInstPtr curStaticInst;
|
|
|
|
class CacheCompletionEvent : public Event
|
|
{
|
|
private:
|
|
SimpleCPU *cpu;
|
|
|
|
public:
|
|
CacheCompletionEvent(SimpleCPU *_cpu);
|
|
|
|
virtual void process();
|
|
virtual const char *description();
|
|
};
|
|
|
|
CacheCompletionEvent cacheCompletionEvent;
|
|
|
|
Status status() const { return _status; }
|
|
|
|
virtual void activateContext(int thread_num, int delay);
|
|
virtual void suspendContext(int thread_num);
|
|
virtual void deallocateContext(int thread_num);
|
|
virtual void haltContext(int thread_num);
|
|
|
|
// statistics
|
|
virtual void regStats();
|
|
virtual void resetStats();
|
|
|
|
// number of simulated instructions
|
|
Counter numInst;
|
|
Counter startNumInst;
|
|
Stats::Scalar<> numInsts;
|
|
|
|
virtual Counter totalInstructions() const
|
|
{
|
|
return numInst - startNumInst;
|
|
}
|
|
|
|
// number of simulated memory references
|
|
Stats::Scalar<> numMemRefs;
|
|
|
|
// number of simulated loads
|
|
Counter numLoad;
|
|
Counter startNumLoad;
|
|
|
|
// number of idle cycles
|
|
Stats::Average<> notIdleFraction;
|
|
Stats::Formula idleFraction;
|
|
|
|
// number of cycles stalled for I-cache misses
|
|
Stats::Scalar<> icacheStallCycles;
|
|
Counter lastIcacheStall;
|
|
|
|
// number of cycles stalled for D-cache misses
|
|
Stats::Scalar<> dcacheStallCycles;
|
|
Counter lastDcacheStall;
|
|
|
|
void processCacheCompletion();
|
|
|
|
virtual void serialize(std::ostream &os);
|
|
virtual void unserialize(Checkpoint *cp, const std::string §ion);
|
|
|
|
template <class T>
|
|
Fault read(Addr addr, T &data, unsigned flags);
|
|
|
|
template <class T>
|
|
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
|
|
|
|
// These functions are only used in CPU models that split
|
|
// effective address computation from the actual memory access.
|
|
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
|
|
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
|
|
|
|
void prefetch(Addr addr, unsigned flags)
|
|
{
|
|
// need to do this...
|
|
}
|
|
|
|
void writeHint(Addr addr, int size, unsigned flags)
|
|
{
|
|
// need to do this...
|
|
}
|
|
|
|
Fault copySrcTranslate(Addr src);
|
|
|
|
Fault copy(Addr dest);
|
|
|
|
// The register accessor methods provide the index of the
|
|
// instruction's operand (e.g., 0 or 1), not the architectural
|
|
// register index, to simplify the implementation of register
|
|
// renaming. We find the architectural register index by indexing
|
|
// into the instruction's own operand index table. Note that a
|
|
// raw pointer to the StaticInst is provided instead of a
|
|
// ref-counted StaticInstPtr to redice overhead. This is fine as
|
|
// long as these methods don't copy the pointer into any long-term
|
|
// storage (which is pretty hard to imagine they would have reason
|
|
// to do).
|
|
|
|
uint64_t readIntReg(const StaticInst *si, int idx)
|
|
{
|
|
return xc->readIntReg(si->srcRegIdx(idx));
|
|
}
|
|
|
|
float readFloatRegSingle(const StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegSingle(reg_idx);
|
|
}
|
|
|
|
double readFloatRegDouble(const StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegDouble(reg_idx);
|
|
}
|
|
|
|
uint64_t readFloatRegInt(const StaticInst *si, int idx)
|
|
{
|
|
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
return xc->readFloatRegInt(reg_idx);
|
|
}
|
|
|
|
void setIntReg(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
xc->setIntReg(si->destRegIdx(idx), val);
|
|
}
|
|
|
|
void setFloatRegSingle(const StaticInst *si, int idx, float val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegSingle(reg_idx, val);
|
|
}
|
|
|
|
void setFloatRegDouble(const StaticInst *si, int idx, double val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegDouble(reg_idx, val);
|
|
}
|
|
|
|
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
|
|
{
|
|
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
|
|
xc->setFloatRegInt(reg_idx, val);
|
|
}
|
|
|
|
uint64_t readPC() { return xc->readPC(); }
|
|
void setNextPC(uint64_t val) { xc->setNextPC(val); }
|
|
|
|
uint64_t readUniq() { return xc->readUniq(); }
|
|
void setUniq(uint64_t val) { xc->setUniq(val); }
|
|
|
|
uint64_t readFpcr() { return xc->readFpcr(); }
|
|
void setFpcr(uint64_t val) { xc->setFpcr(val); }
|
|
|
|
#if FULL_SYSTEM
|
|
uint64_t readIpr(int idx, Fault &fault) { return xc->readIpr(idx, fault); }
|
|
Fault setIpr(int idx, uint64_t val) { return xc->setIpr(idx, val); }
|
|
Fault hwrei() { return xc->hwrei(); }
|
|
int readIntrFlag() { return xc->readIntrFlag(); }
|
|
void setIntrFlag(int val) { xc->setIntrFlag(val); }
|
|
bool inPalMode() { return xc->inPalMode(); }
|
|
void ev5_trap(Fault fault) { xc->ev5_trap(fault); }
|
|
bool simPalCheck(int palFunc) { return xc->simPalCheck(palFunc); }
|
|
#else
|
|
void syscall() { xc->syscall(); }
|
|
#endif
|
|
|
|
bool misspeculating() { return xc->misspeculating(); }
|
|
ExecContext *xcBase() { return xc; }
|
|
};
|
|
|
|
#endif // __CPU_SIMPLE_CPU_SIMPLE_CPU_HH__
|