gem5/src/arch/x86/isa/specialize.isa
Gabe Black fc6b2cceb4 X86: Make fixed register operands ignore register index extensions from the REX prefix.
The only cases where this was the correct behavior are now handled with the
"B" operand type, and doing things this way was breaking some instructions,
notably a shift.

--HG--
extra : convert_revision : 072346d4f541edaceba7aecc26ba8d2cd756e481
2007-08-04 20:17:31 -07:00

185 lines
8.3 KiB
C++

// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use. Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
// Director of Intellectual Property Licensing
// Office of Strategy and Technology
// Hewlett-Packard Company
// 1501 Page Mill Road
// Palo Alto, California 94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. No right of
// sublicense is granted herewith. Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses. Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
////////////////////////////////////////////////////////////////////
//
// Code to "specialize" a microcode sequence to use a particular
// variety of operands
//
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# Each element of the dict is a list containing a function and then the
# arguments to pass to it.
def doSplitDecode(switchVal, vals, default = None):
blocks = OutputBlocks()
blocks.decode_block = 'switch(%s) {\n' % switchVal
for (val, todo) in vals.items():
new_blocks = todo[0](*todo[1:])
new_blocks.decode_block = \
'\tcase %s: %s\n' % (val, new_blocks.decode_block)
blocks.append(new_blocks)
if default:
new_blocks = default[0](*default[1:])
new_blocks.decode_block = \
'\tdefault: %s\n' % new_blocks.decode_block
blocks.append(new_blocks)
blocks.decode_block += '}\n'
return blocks
}};
let {{
def doRipRelativeDecode(Name, opTypes, env):
# print "RIPing %s with opTypes %s" % (Name, opTypes)
normBlocks = specializeInst(Name + "_M", copy.copy(opTypes), copy.copy(env))
ripBlocks = specializeInst(Name + "_P", copy.copy(opTypes), copy.copy(env))
blocks = OutputBlocks()
blocks.append(normBlocks)
blocks.append(ripBlocks)
blocks.decode_block = '''
if(machInst.modRM.mod == 0 &&
machInst.modRM.rm == 5 &&
machInst.mode.submode == SixtyFourBitMode)
{ %s }
else
{ %s }''' % \
(ripBlocks.decode_block, normBlocks.decode_block)
return blocks
}};
let {{
class OpType(object):
parser = re.compile(r"(?P<tag>[A-Z]+)(?P<size>[a-z]*)|(r(?P<reg>[A-Z0-9]+)(?P<rsize>[a-z]*))")
def __init__(self, opTypeString):
match = OpType.parser.search(opTypeString)
if match == None:
raise Exception, "Problem parsing operand type %s" % opTypeString
self.reg = match.group("reg")
self.tag = match.group("tag")
self.size = match.group("size")
if not self.size:
self.size = match.group("rsize")
ModRMRegIndex = "(MODRM_REG | (REX_R << 3))"
ModRMRMIndex = "(MODRM_RM | (REX_B << 3))"
InstRegIndex = "(OPCODE_OP_BOTTOM3 | (REX_B << 3))"
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTypes".
def specializeInst(Name, opTypes, env):
# print "Specializing %s with opTypes %s" % (Name, opTypes)
while len(opTypes):
# Parse the operand type string we're working with
opType = OpType(opTypes[0])
opTypes.pop(0)
if opType.tag not in ("I", "J"):
if opType.size:
env.setSize(opType.size)
if opType.reg:
#Figure out what to do with fixed register operands
#This is the index to use, so we should stick it some place.
if opType.reg in ("A", "B", "C", "D"):
env.addReg("INTREG_R%sX" % opType.reg)
else:
env.addReg("INTREG_R%s" % opType.reg)
Name += "_R"
elif opType.tag == "B":
# This refers to registers whose index is encoded as part of the opcode
Name += "_R"
env.addReg(InstRegIndex)
elif opType.tag == "M":
# This refers to memory. The macroop constructor sets up modrm
# addressing. Non memory modrm settings should cause an error.
env.doModRM = True
return doRipRelativeDecode(Name, opTypes, env)
elif opType.tag == None or opType.size == None:
raise Exception, "Problem parsing operand tag: %s" % opType.tag
elif opType.tag in ("C", "D", "G", "P", "S", "T", "V"):
# Use the "reg" field of the ModRM byte to select the register
env.addReg(ModRMRegIndex)
Name += "_R"
elif opType.tag in ("E", "Q", "W"):
# This might refer to memory or to a register. We need to
# divide it up farther.
regEnv = copy.copy(env)
regEnv.addReg(ModRMRMIndex)
# This refers to memory. The macroop constructor should set up
# modrm addressing.
memEnv = copy.copy(env)
memEnv.doModRM = True
return doSplitDecode("MODRM_MOD",
{"3" : (specializeInst, Name + "_R", copy.copy(opTypes), regEnv)},
(doRipRelativeDecode, Name, copy.copy(opTypes), memEnv))
elif opType.tag in ("I", "J"):
# Immediates
Name += "_I"
elif opType.tag in ("PR", "R", "VR"):
# Non register modrm settings should cause an error
env.addReg(ModRMRMIndex)
Name += "_R"
else:
raise Exception, "Unrecognized tag %s." % opType.tag
# Generate code to return a macroop of the given name which will
# operate in the "emulation environment" env
return genMacroop(Name, env)
}};