gem5/src/cpu/simple/base.cc
Koan-Sin Tan 7d4f187700 clang: Enable compiling gem5 using clang 2.9 and 3.0
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
2012-01-31 12:05:52 -05:00

566 lines
15 KiB
C++

/*
* Copyright (c) 2010-2011 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/faults.hh"
#include "arch/utility.hh"
#include "base/loader/symtab.hh"
#include "base/cp_annotate.hh"
#include "base/cprintf.hh"
#include "base/inifile.hh"
#include "base/misc.hh"
#include "base/pollevent.hh"
#include "base/range.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "config/the_isa.hh"
#include "config/use_checker.hh"
#include "cpu/simple/base.hh"
#include "cpu/base.hh"
#include "cpu/exetrace.hh"
#include "cpu/profile.hh"
#include "cpu/simple_thread.hh"
#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
#include "cpu/thread_context.hh"
#include "debug/Decode.hh"
#include "debug/Fetch.hh"
#include "debug/Quiesce.hh"
#include "mem/packet.hh"
#include "mem/request.hh"
#include "params/BaseSimpleCPU.hh"
#include "sim/byteswap.hh"
#include "sim/debug.hh"
#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#include "sim/system.hh"
#if FULL_SYSTEM
#include "arch/kernel_stats.hh"
#include "arch/stacktrace.hh"
#include "arch/tlb.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/mem_object.hh"
#endif // FULL_SYSTEM
#if USE_CHECKER
#include "cpu/checker/cpu.hh"
#include "cpu/checker/thread_context.hh"
#endif
using namespace std;
using namespace TheISA;
BaseSimpleCPU::BaseSimpleCPU(BaseSimpleCPUParams *p)
: BaseCPU(p), traceData(NULL), thread(NULL), predecoder(NULL)
{
#if FULL_SYSTEM
thread = new SimpleThread(this, 0, p->system, p->itb, p->dtb);
#else
thread = new SimpleThread(this, /* thread_num */ 0, p->workload[0],
p->itb, p->dtb);
#endif // !FULL_SYSTEM
thread->setStatus(ThreadContext::Halted);
tc = thread->getTC();
#if USE_CHECKER
if (p->checker) {
BaseCPU *temp_checker = p->checker;
checker = dynamic_cast<CheckerCPU *>(temp_checker);
#if FULL_SYSTEM
checker->setSystem(p->system);
#endif
// Manipulate thread context
ThreadContext *cpu_tc = tc;
tc = new CheckerThreadContext<ThreadContext>(cpu_tc, this->checker);
} else {
checker = NULL;
}
#endif
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
lastIcacheStall = 0;
lastDcacheStall = 0;
threadContexts.push_back(tc);
fetchOffset = 0;
stayAtPC = false;
}
BaseSimpleCPU::~BaseSimpleCPU()
{
}
void
BaseSimpleCPU::deallocateContext(ThreadID thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::haltContext(ThreadID thread_num)
{
// for now, these are equivalent
suspendContext(thread_num);
}
void
BaseSimpleCPU::regStats()
{
using namespace Stats;
BaseCPU::regStats();
numInsts
.name(name() + ".num_insts")
.desc("Number of instructions executed")
;
numIntAluAccesses
.name(name() + ".num_int_alu_accesses")
.desc("Number of integer alu accesses")
;
numFpAluAccesses
.name(name() + ".num_fp_alu_accesses")
.desc("Number of float alu accesses")
;
numCallsReturns
.name(name() + ".num_func_calls")
.desc("number of times a function call or return occured")
;
numCondCtrlInsts
.name(name() + ".num_conditional_control_insts")
.desc("number of instructions that are conditional controls")
;
numIntInsts
.name(name() + ".num_int_insts")
.desc("number of integer instructions")
;
numFpInsts
.name(name() + ".num_fp_insts")
.desc("number of float instructions")
;
numIntRegReads
.name(name() + ".num_int_register_reads")
.desc("number of times the integer registers were read")
;
numIntRegWrites
.name(name() + ".num_int_register_writes")
.desc("number of times the integer registers were written")
;
numFpRegReads
.name(name() + ".num_fp_register_reads")
.desc("number of times the floating registers were read")
;
numFpRegWrites
.name(name() + ".num_fp_register_writes")
.desc("number of times the floating registers were written")
;
numMemRefs
.name(name()+".num_mem_refs")
.desc("number of memory refs")
;
numStoreInsts
.name(name() + ".num_store_insts")
.desc("Number of store instructions")
;
numLoadInsts
.name(name() + ".num_load_insts")
.desc("Number of load instructions")
;
notIdleFraction
.name(name() + ".not_idle_fraction")
.desc("Percentage of non-idle cycles")
;
idleFraction
.name(name() + ".idle_fraction")
.desc("Percentage of idle cycles")
;
numBusyCycles
.name(name() + ".num_busy_cycles")
.desc("Number of busy cycles")
;
numIdleCycles
.name(name()+".num_idle_cycles")
.desc("Number of idle cycles")
;
icacheStallCycles
.name(name() + ".icache_stall_cycles")
.desc("ICache total stall cycles")
.prereq(icacheStallCycles)
;
dcacheStallCycles
.name(name() + ".dcache_stall_cycles")
.desc("DCache total stall cycles")
.prereq(dcacheStallCycles)
;
icacheRetryCycles
.name(name() + ".icache_retry_cycles")
.desc("ICache total retry cycles")
.prereq(icacheRetryCycles)
;
dcacheRetryCycles
.name(name() + ".dcache_retry_cycles")
.desc("DCache total retry cycles")
.prereq(dcacheRetryCycles)
;
idleFraction = constant(1.0) - notIdleFraction;
numIdleCycles = idleFraction * numCycles;
numBusyCycles = (notIdleFraction)*numCycles;
}
void
BaseSimpleCPU::resetStats()
{
// startNumInst = numInst;
notIdleFraction = (_status != Idle);
}
void
BaseSimpleCPU::serialize(ostream &os)
{
SERIALIZE_ENUM(_status);
BaseCPU::serialize(os);
// SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc.0", name()));
thread->serialize(os);
}
void
BaseSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
UNSERIALIZE_ENUM(_status);
BaseCPU::unserialize(cp, section);
// UNSERIALIZE_SCALAR(inst);
thread->unserialize(cp, csprintf("%s.xc.0", section));
}
void
change_thread_state(ThreadID tid, int activate, int priority)
{
}
#if FULL_SYSTEM
Addr
BaseSimpleCPU::dbg_vtophys(Addr addr)
{
return vtophys(tc, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
BaseSimpleCPU::wakeup()
{
if (thread->status() != ThreadContext::Suspended)
return;
DPRINTF(Quiesce,"Suspended Processor awoke\n");
thread->activate();
}
#endif // FULL_SYSTEM
void
BaseSimpleCPU::checkForInterrupts()
{
#if FULL_SYSTEM
if (checkInterrupts(tc)) {
Fault interrupt = interrupts->getInterrupt(tc);
if (interrupt != NoFault) {
fetchOffset = 0;
interrupts->updateIntrInfo(tc);
interrupt->invoke(tc);
predecoder.reset();
}
}
#endif
}
void
BaseSimpleCPU::setupFetchRequest(Request *req)
{
Addr instAddr = thread->instAddr();
// set up memory request for instruction fetch
DPRINTF(Fetch, "Fetch: PC:%08p\n", instAddr);
Addr fetchPC = (instAddr & PCMask) + fetchOffset;
req->setVirt(0, fetchPC, sizeof(MachInst), Request::INST_FETCH, instAddr);
}
void
BaseSimpleCPU::preExecute()
{
// maintain $r0 semantics
thread->setIntReg(ZeroReg, 0);
#if THE_ISA == ALPHA_ISA
thread->setFloatReg(ZeroReg, 0.0);
#endif // ALPHA_ISA
// check for instruction-count-based events
comInstEventQueue[0]->serviceEvents(numInst);
system->instEventQueue.serviceEvents(system->totalNumInsts);
// decode the instruction
inst = gtoh(inst);
TheISA::PCState pcState = thread->pcState();
if (isRomMicroPC(pcState.microPC())) {
stayAtPC = false;
curStaticInst = microcodeRom.fetchMicroop(pcState.microPC(),
curMacroStaticInst);
} else if (!curMacroStaticInst) {
//We're not in the middle of a macro instruction
StaticInstPtr instPtr = NULL;
//Predecode, ie bundle up an ExtMachInst
//This should go away once the constructor can be set up properly
predecoder.setTC(thread->getTC());
//If more fetch data is needed, pass it in.
Addr fetchPC = (pcState.instAddr() & PCMask) + fetchOffset;
//if(predecoder.needMoreBytes())
predecoder.moreBytes(pcState, fetchPC, inst);
//else
// predecoder.process();
//If an instruction is ready, decode it. Otherwise, we'll have to
//fetch beyond the MachInst at the current pc.
if (predecoder.extMachInstReady()) {
stayAtPC = false;
ExtMachInst machInst = predecoder.getExtMachInst(pcState);
thread->pcState(pcState);
instPtr = thread->decoder.decode(machInst, pcState.instAddr());
} else {
stayAtPC = true;
fetchOffset += sizeof(MachInst);
}
//If we decoded an instruction and it's microcoded, start pulling
//out micro ops
if (instPtr && instPtr->isMacroop()) {
curMacroStaticInst = instPtr;
curStaticInst = curMacroStaticInst->fetchMicroop(pcState.microPC());
} else {
curStaticInst = instPtr;
}
} else {
//Read the next micro op from the macro op
curStaticInst = curMacroStaticInst->fetchMicroop(pcState.microPC());
}
//If we decoded an instruction this "tick", record information about it.
if(curStaticInst)
{
#if TRACING_ON
traceData = tracer->getInstRecord(curTick(), tc,
curStaticInst, thread->pcState(), curMacroStaticInst);
DPRINTF(Decode,"Decode: Decoded %s instruction: 0x%x\n",
curStaticInst->getName(), curStaticInst->machInst);
#endif // TRACING_ON
}
}
void
BaseSimpleCPU::postExecute()
{
assert(curStaticInst);
TheISA::PCState pc = tc->pcState();
Addr instAddr = pc.instAddr();
#if FULL_SYSTEM
if (thread->profile) {
bool usermode = TheISA::inUserMode(tc);
thread->profilePC = usermode ? 1 : instAddr;
ProfileNode *node = thread->profile->consume(tc, curStaticInst);
if (node)
thread->profileNode = node;
}
#endif
if (curStaticInst->isMemRef()) {
numMemRefs++;
}
if (curStaticInst->isLoad()) {
++numLoad;
comLoadEventQueue[0]->serviceEvents(numLoad);
}
if (CPA::available()) {
CPA::cpa()->swAutoBegin(tc, pc.nextInstAddr());
}
/* Power model statistics */
//integer alu accesses
if (curStaticInst->isInteger()){
numIntAluAccesses++;
numIntInsts++;
}
//float alu accesses
if (curStaticInst->isFloating()){
numFpAluAccesses++;
numFpInsts++;
}
//number of function calls/returns to get window accesses
if (curStaticInst->isCall() || curStaticInst->isReturn()){
numCallsReturns++;
}
//the number of branch predictions that will be made
if (curStaticInst->isCondCtrl()){
numCondCtrlInsts++;
}
//result bus acceses
if (curStaticInst->isLoad()){
numLoadInsts++;
}
if (curStaticInst->isStore()){
numStoreInsts++;
}
/* End power model statistics */
traceFunctions(instAddr);
if (traceData) {
traceData->dump();
delete traceData;
traceData = NULL;
}
}
void
BaseSimpleCPU::advancePC(Fault fault)
{
//Since we're moving to a new pc, zero out the offset
fetchOffset = 0;
if (fault != NoFault) {
curMacroStaticInst = StaticInst::nullStaticInstPtr;
fault->invoke(tc, curStaticInst);
predecoder.reset();
} else {
if (curStaticInst) {
if (curStaticInst->isLastMicroop())
curMacroStaticInst = StaticInst::nullStaticInstPtr;
TheISA::PCState pcState = thread->pcState();
TheISA::advancePC(pcState, curStaticInst);
thread->pcState(pcState);
}
}
}
/*Fault
BaseSimpleCPU::CacheOp(uint8_t Op, Addr EffAddr)
{
// translate to physical address
Fault fault = NoFault;
int CacheID = Op & 0x3; // Lower 3 bits identify Cache
int CacheOP = Op >> 2; // Upper 3 bits identify Cache Operation
if(CacheID > 1)
{
warn("CacheOps not implemented for secondary/tertiary caches\n");
}
else
{
switch(CacheOP)
{ // Fill Packet Type
case 0: warn("Invalidate Cache Op\n");
break;
case 1: warn("Index Load Tag Cache Op\n");
break;
case 2: warn("Index Store Tag Cache Op\n");
break;
case 4: warn("Hit Invalidate Cache Op\n");
break;
case 5: warn("Fill/Hit Writeback Invalidate Cache Op\n");
break;
case 6: warn("Hit Writeback\n");
break;
case 7: warn("Fetch & Lock Cache Op\n");
break;
default: warn("Unimplemented Cache Op\n");
}
}
return fault;
}*/