gem5/src/cpu/base.cc
Koan-Sin Tan 7d4f187700 clang: Enable compiling gem5 using clang 2.9 and 3.0
This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
2012-01-31 12:05:52 -05:00

572 lines
17 KiB
C++

/*
* Copyright (c) 2011 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* Copyright (c) 2011 Regents of the University of California
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
* Nathan Binkert
* Rick Strong
*/
#include <iostream>
#include <sstream>
#include <string>
#include "arch/tlb.hh"
#include "base/loader/symtab.hh"
#include "base/cprintf.hh"
#include "base/misc.hh"
#include "base/output.hh"
#include "base/trace.hh"
#include "config/use_checker.hh"
#include "cpu/base.hh"
#include "cpu/cpuevent.hh"
#include "cpu/profile.hh"
#include "cpu/thread_context.hh"
#include "debug/SyscallVerbose.hh"
#include "params/BaseCPU.hh"
#include "sim/process.hh"
#include "sim/sim_events.hh"
#include "sim/sim_exit.hh"
#include "sim/system.hh"
#if USE_CHECKER
#include "cpu/checker/cpu.hh"
#endif
// Hack
#include "sim/stat_control.hh"
using namespace std;
vector<BaseCPU *> BaseCPU::cpuList;
// This variable reflects the max number of threads in any CPU. Be
// careful to only use it once all the CPUs that you care about have
// been initialized
int maxThreadsPerCPU = 1;
CPUProgressEvent::CPUProgressEvent(BaseCPU *_cpu, Tick ival)
: Event(Event::Progress_Event_Pri), _interval(ival), lastNumInst(0),
cpu(_cpu), _repeatEvent(true)
{
if (_interval)
cpu->schedule(this, curTick() + _interval);
}
void
CPUProgressEvent::process()
{
Counter temp = cpu->totalInstructions();
#ifndef NDEBUG
double ipc = double(temp - lastNumInst) / (_interval / cpu->ticks(1));
DPRINTFN("%s progress event, total committed:%i, progress insts committed: "
"%lli, IPC: %0.8d\n", cpu->name(), temp, temp - lastNumInst,
ipc);
ipc = 0.0;
#else
cprintf("%lli: %s progress event, total committed:%i, progress insts "
"committed: %lli\n", curTick(), cpu->name(), temp,
temp - lastNumInst);
#endif
lastNumInst = temp;
if (_repeatEvent)
cpu->schedule(this, curTick() + _interval);
}
const char *
CPUProgressEvent::description() const
{
return "CPU Progress";
}
#if FULL_SYSTEM
BaseCPU::BaseCPU(Params *p)
: MemObject(p), clock(p->clock), instCnt(0), _cpuId(p->cpu_id),
interrupts(p->interrupts),
numThreads(p->numThreads), system(p->system),
phase(p->phase)
#else
BaseCPU::BaseCPU(Params *p)
: MemObject(p), clock(p->clock), _cpuId(p->cpu_id),
numThreads(p->numThreads), system(p->system),
phase(p->phase)
#endif
{
// currentTick = curTick();
// if Python did not provide a valid ID, do it here
if (_cpuId == -1 ) {
_cpuId = cpuList.size();
}
// add self to global list of CPUs
cpuList.push_back(this);
DPRINTF(SyscallVerbose, "Constructing CPU with id %d\n", _cpuId);
if (numThreads > maxThreadsPerCPU)
maxThreadsPerCPU = numThreads;
// allocate per-thread instruction-based event queues
comInstEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comInstEventQueue[tid] =
new EventQueue("instruction-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_insts_any_thread != 0) {
const char *cause = "a thread reached the max instruction count";
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new SimLoopExitEvent(cause, 0);
comInstEventQueue[tid]->schedule(event, p->max_insts_any_thread);
}
}
if (p->max_insts_all_threads != 0) {
const char *cause = "all threads reached the max instruction count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comInstEventQueue[tid]->schedule(event, p->max_insts_all_threads);
}
}
// allocate per-thread load-based event queues
comLoadEventQueue = new EventQueue *[numThreads];
for (ThreadID tid = 0; tid < numThreads; ++tid)
comLoadEventQueue[tid] = new EventQueue("load-based event queue");
//
// set up instruction-count-based termination events, if any
//
if (p->max_loads_any_thread != 0) {
const char *cause = "a thread reached the max load count";
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new SimLoopExitEvent(cause, 0);
comLoadEventQueue[tid]->schedule(event, p->max_loads_any_thread);
}
}
if (p->max_loads_all_threads != 0) {
const char *cause = "all threads reached the max load count";
// allocate & initialize shared downcounter: each event will
// decrement this when triggered; simulation will terminate
// when counter reaches 0
int *counter = new int;
*counter = numThreads;
for (ThreadID tid = 0; tid < numThreads; ++tid) {
Event *event = new CountedExitEvent(cause, *counter);
comLoadEventQueue[tid]->schedule(event, p->max_loads_all_threads);
}
}
functionTracingEnabled = false;
if (p->function_trace) {
const string fname = csprintf("ftrace.%s", name());
functionTraceStream = simout.find(fname);
if (!functionTraceStream)
functionTraceStream = simout.create(fname);
currentFunctionStart = currentFunctionEnd = 0;
functionEntryTick = p->function_trace_start;
if (p->function_trace_start == 0) {
functionTracingEnabled = true;
} else {
typedef EventWrapper<BaseCPU, &BaseCPU::enableFunctionTrace> wrap;
Event *event = new wrap(this, true);
schedule(event, p->function_trace_start);
}
}
#if FULL_SYSTEM
// Check if CPU model has interrupts connected. The CheckerCPU
// cannot take interrupts directly for example.
if (interrupts)
interrupts->setCPU(this);
profileEvent = NULL;
if (params()->profile)
profileEvent = new ProfileEvent(this, params()->profile);
#endif
tracer = params()->tracer;
}
void
BaseCPU::enableFunctionTrace()
{
functionTracingEnabled = true;
}
BaseCPU::~BaseCPU()
{
}
void
BaseCPU::init()
{
if (!params()->defer_registration)
registerThreadContexts();
}
void
BaseCPU::startup()
{
#if FULL_SYSTEM
if (!params()->defer_registration && profileEvent)
schedule(profileEvent, curTick());
#endif
if (params()->progress_interval) {
Tick num_ticks = ticks(params()->progress_interval);
new CPUProgressEvent(this, num_ticks);
}
}
void
BaseCPU::regStats()
{
using namespace Stats;
numCycles
.name(name() + ".numCycles")
.desc("number of cpu cycles simulated")
;
numWorkItemsStarted
.name(name() + ".numWorkItemsStarted")
.desc("number of work items this cpu started")
;
numWorkItemsCompleted
.name(name() + ".numWorkItemsCompleted")
.desc("number of work items this cpu completed")
;
int size = threadContexts.size();
if (size > 1) {
for (int i = 0; i < size; ++i) {
stringstream namestr;
ccprintf(namestr, "%s.ctx%d", name(), i);
threadContexts[i]->regStats(namestr.str());
}
} else if (size == 1)
threadContexts[0]->regStats(name());
#if FULL_SYSTEM
#endif
}
Tick
BaseCPU::nextCycle()
{
Tick next_tick = curTick() - phase + clock - 1;
next_tick -= (next_tick % clock);
next_tick += phase;
return next_tick;
}
Tick
BaseCPU::nextCycle(Tick begin_tick)
{
Tick next_tick = begin_tick;
if (next_tick % clock != 0)
next_tick = next_tick - (next_tick % clock) + clock;
next_tick += phase;
assert(next_tick >= curTick());
return next_tick;
}
void
BaseCPU::registerThreadContexts()
{
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
ThreadContext *tc = threadContexts[tid];
/** This is so that contextId and cpuId match where there is a
* 1cpu:1context relationship. Otherwise, the order of registration
* could affect the assignment and cpu 1 could have context id 3, for
* example. We may even want to do something like this for SMT so that
* cpu 0 has the lowest thread contexts and cpu N has the highest, but
* I'll just do this for now
*/
if (numThreads == 1)
tc->setContextId(system->registerThreadContext(tc, _cpuId));
else
tc->setContextId(system->registerThreadContext(tc));
#if !FULL_SYSTEM
tc->getProcessPtr()->assignThreadContext(tc->contextId());
#endif
}
}
int
BaseCPU::findContext(ThreadContext *tc)
{
ThreadID size = threadContexts.size();
for (ThreadID tid = 0; tid < size; ++tid) {
if (tc == threadContexts[tid])
return tid;
}
return 0;
}
void
BaseCPU::switchOut()
{
// panic("This CPU doesn't support sampling!");
#if FULL_SYSTEM
if (profileEvent && profileEvent->scheduled())
deschedule(profileEvent);
#endif
}
void
BaseCPU::takeOverFrom(BaseCPU *oldCPU)
{
Port *ic = getPort("icache_port");
Port *dc = getPort("dcache_port");
assert(threadContexts.size() == oldCPU->threadContexts.size());
_cpuId = oldCPU->cpuId();
ThreadID size = threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *newTC = threadContexts[i];
ThreadContext *oldTC = oldCPU->threadContexts[i];
newTC->takeOverFrom(oldTC);
CpuEvent::replaceThreadContext(oldTC, newTC);
assert(newTC->contextId() == oldTC->contextId());
assert(newTC->threadId() == oldTC->threadId());
system->replaceThreadContext(newTC, newTC->contextId());
/* This code no longer works since the zero register (e.g.,
* r31 on Alpha) doesn't necessarily contain zero at this
* point.
if (DTRACE(Context))
ThreadContext::compare(oldTC, newTC);
*/
Port *old_itb_port, *old_dtb_port, *new_itb_port, *new_dtb_port;
old_itb_port = oldTC->getITBPtr()->getPort();
old_dtb_port = oldTC->getDTBPtr()->getPort();
new_itb_port = newTC->getITBPtr()->getPort();
new_dtb_port = newTC->getDTBPtr()->getPort();
// Move over any table walker ports if they exist
if (new_itb_port && !new_itb_port->isConnected()) {
assert(old_itb_port);
Port *peer = old_itb_port->getPeer();;
new_itb_port->setPeer(peer);
peer->setPeer(new_itb_port);
}
if (new_dtb_port && !new_dtb_port->isConnected()) {
assert(old_dtb_port);
Port *peer = old_dtb_port->getPeer();;
new_dtb_port->setPeer(peer);
peer->setPeer(new_dtb_port);
}
#if USE_CHECKER
Port *old_checker_itb_port, *old_checker_dtb_port;
Port *new_checker_itb_port, *new_checker_dtb_port;
CheckerCPU *oldChecker =
dynamic_cast<CheckerCPU*>(oldTC->getCheckerCpuPtr());
CheckerCPU *newChecker =
dynamic_cast<CheckerCPU*>(newTC->getCheckerCpuPtr());
old_checker_itb_port = oldChecker->getITBPtr()->getPort();
old_checker_dtb_port = oldChecker->getDTBPtr()->getPort();
new_checker_itb_port = newChecker->getITBPtr()->getPort();
new_checker_dtb_port = newChecker->getDTBPtr()->getPort();
// Move over any table walker ports if they exist for checker
if (new_checker_itb_port && !new_checker_itb_port->isConnected()) {
assert(old_checker_itb_port);
Port *peer = old_checker_itb_port->getPeer();;
new_checker_itb_port->setPeer(peer);
peer->setPeer(new_checker_itb_port);
}
if (new_checker_dtb_port && !new_checker_dtb_port->isConnected()) {
assert(old_checker_dtb_port);
Port *peer = old_checker_dtb_port->getPeer();;
new_checker_dtb_port->setPeer(peer);
peer->setPeer(new_checker_dtb_port);
}
#endif
}
#if FULL_SYSTEM
interrupts = oldCPU->interrupts;
interrupts->setCPU(this);
for (ThreadID i = 0; i < size; ++i)
threadContexts[i]->profileClear();
if (profileEvent)
schedule(profileEvent, curTick());
#endif
// Connect new CPU to old CPU's memory only if new CPU isn't
// connected to anything. Also connect old CPU's memory to new
// CPU.
if (!ic->isConnected()) {
Port *peer = oldCPU->getPort("icache_port")->getPeer();
ic->setPeer(peer);
peer->setPeer(ic);
}
if (!dc->isConnected()) {
Port *peer = oldCPU->getPort("dcache_port")->getPeer();
dc->setPeer(peer);
peer->setPeer(dc);
}
}
#if FULL_SYSTEM
BaseCPU::ProfileEvent::ProfileEvent(BaseCPU *_cpu, Tick _interval)
: cpu(_cpu), interval(_interval)
{ }
void
BaseCPU::ProfileEvent::process()
{
ThreadID size = cpu->threadContexts.size();
for (ThreadID i = 0; i < size; ++i) {
ThreadContext *tc = cpu->threadContexts[i];
tc->profileSample();
}
cpu->schedule(this, curTick() + interval);
}
void
BaseCPU::serialize(std::ostream &os)
{
SERIALIZE_SCALAR(instCnt);
interrupts->serialize(os);
}
void
BaseCPU::unserialize(Checkpoint *cp, const std::string &section)
{
UNSERIALIZE_SCALAR(instCnt);
interrupts->unserialize(cp, section);
}
#endif // FULL_SYSTEM
void
BaseCPU::traceFunctionsInternal(Addr pc)
{
if (!debugSymbolTable)
return;
// if pc enters different function, print new function symbol and
// update saved range. Otherwise do nothing.
if (pc < currentFunctionStart || pc >= currentFunctionEnd) {
string sym_str;
bool found = debugSymbolTable->findNearestSymbol(pc, sym_str,
currentFunctionStart,
currentFunctionEnd);
if (!found) {
// no symbol found: use addr as label
sym_str = csprintf("0x%x", pc);
currentFunctionStart = pc;
currentFunctionEnd = pc + 1;
}
ccprintf(*functionTraceStream, " (%d)\n%d: %s",
curTick() - functionEntryTick, curTick(), sym_str);
functionEntryTick = curTick();
}
}
bool
BaseCPU::CpuPort::recvTiming(PacketPtr pkt)
{
panic("BaseCPU doesn't expect recvTiming callback!");
return true;
}
void
BaseCPU::CpuPort::recvRetry()
{
panic("BaseCPU doesn't expect recvRetry callback!");
}
Tick
BaseCPU::CpuPort::recvAtomic(PacketPtr pkt)
{
panic("BaseCPU doesn't expect recvAtomic callback!");
return curTick();
}
void
BaseCPU::CpuPort::recvFunctional(PacketPtr pkt)
{
// No internal storage to update (in the general case). In the
// long term this should never be called, but that assumed a split
// into master/slave and request/response.
}
void
BaseCPU::CpuPort::recvRangeChange()
{
}