gem5/src/mem/DRAMCtrl.py
Andreas Hansson 5ea60a95b3 config: Adjust DRAM channel interleaving defaults
This patch changes the DRAM channel interleaving default behaviour to
be more representative. The default address mapping (RoRaBaCoCh) moves
the channel bits towards the least significant bits, and uses 128 byte
as the default channel interleaving granularity.

These defaults can be overridden if desired, but should serve as a
sensible starting point for most use-cases.
2015-02-03 14:25:52 -05:00

824 lines
26 KiB
Python

# Copyright (c) 2012-2014 ARM Limited
# All rights reserved.
#
# The license below extends only to copyright in the software and shall
# not be construed as granting a license to any other intellectual
# property including but not limited to intellectual property relating
# to a hardware implementation of the functionality of the software
# licensed hereunder. You may use the software subject to the license
# terms below provided that you ensure that this notice is replicated
# unmodified and in its entirety in all distributions of the software,
# modified or unmodified, in source code or in binary form.
#
# Copyright (c) 2013 Amin Farmahini-Farahani
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Andreas Hansson
# Ani Udipi
from m5.params import *
from AbstractMemory import *
# Enum for memory scheduling algorithms, currently First-Come
# First-Served and a First-Row Hit then First-Come First-Served
class MemSched(Enum): vals = ['fcfs', 'frfcfs']
# Enum for the address mapping. With Ch, Ra, Ba, Ro and Co denoting
# channel, rank, bank, row and column, respectively, and going from
# MSB to LSB. Available are RoRaBaChCo and RoRaBaCoCh, that are
# suitable for an open-page policy, optimising for sequential accesses
# hitting in the open row. For a closed-page policy, RoCoRaBaCh
# maximises parallelism.
class AddrMap(Enum): vals = ['RoRaBaChCo', 'RoRaBaCoCh', 'RoCoRaBaCh']
# Enum for the page policy, either open, open_adaptive, close, or
# close_adaptive.
class PageManage(Enum): vals = ['open', 'open_adaptive', 'close',
'close_adaptive']
# DRAMCtrl is a single-channel single-ported DRAM controller model
# that aims to model the most important system-level performance
# effects of a DRAM without getting into too much detail of the DRAM
# itself.
class DRAMCtrl(AbstractMemory):
type = 'DRAMCtrl'
cxx_header = "mem/dram_ctrl.hh"
# single-ported on the system interface side, instantiate with a
# bus in front of the controller for multiple ports
port = SlavePort("Slave port")
# the basic configuration of the controller architecture, note
# that each entry corresponds to a burst for the specific DRAM
# configuration (e.g. x32 with burst length 8 is 32 bytes) and not
# the cacheline size or request/packet size
write_buffer_size = Param.Unsigned(64, "Number of write queue entries")
read_buffer_size = Param.Unsigned(32, "Number of read queue entries")
# threshold in percent for when to forcefully trigger writes and
# start emptying the write buffer
write_high_thresh_perc = Param.Percent(85, "Threshold to force writes")
# threshold in percentage for when to start writes if the read
# queue is empty
write_low_thresh_perc = Param.Percent(50, "Threshold to start writes")
# minimum write bursts to schedule before switching back to reads
min_writes_per_switch = Param.Unsigned(16, "Minimum write bursts before "
"switching to reads")
# scheduler, address map and page policy
mem_sched_policy = Param.MemSched('frfcfs', "Memory scheduling policy")
addr_mapping = Param.AddrMap('RoRaBaCoCh', "Address mapping policy")
page_policy = Param.PageManage('open_adaptive', "Page management policy")
# enforce a limit on the number of accesses per row
max_accesses_per_row = Param.Unsigned(16, "Max accesses per row before "
"closing");
# size of DRAM Chip in Bytes
device_size = Param.MemorySize("Size of DRAM chip")
# pipeline latency of the controller and PHY, split into a
# frontend part and a backend part, with reads and writes serviced
# by the queues only seeing the frontend contribution, and reads
# serviced by the memory seeing the sum of the two
static_frontend_latency = Param.Latency("10ns", "Static frontend latency")
static_backend_latency = Param.Latency("10ns", "Static backend latency")
# the physical organisation of the DRAM
device_bus_width = Param.Unsigned("data bus width in bits for each DRAM "\
"device/chip")
burst_length = Param.Unsigned("Burst lenght (BL) in beats")
device_rowbuffer_size = Param.MemorySize("Page (row buffer) size per "\
"device/chip")
devices_per_rank = Param.Unsigned("Number of devices/chips per rank")
ranks_per_channel = Param.Unsigned("Number of ranks per channel")
# default to 0 bank groups per rank, indicating bank group architecture
# is not used
# update per memory class when bank group architecture is supported
bank_groups_per_rank = Param.Unsigned(0, "Number of bank groups per rank")
banks_per_rank = Param.Unsigned("Number of banks per rank")
# only used for the address mapping as the controller by
# construction is a single channel and multiple controllers have
# to be instantiated for a multi-channel configuration
channels = Param.Unsigned(1, "Number of channels")
# For power modelling we need to know if the DRAM has a DLL or not
dll = Param.Bool(True, "DRAM has DLL or not")
# DRAMPower provides in addition to the core power, the possibility to
# include RD/WR termination and IO power. This calculation assumes some
# default values. The integration of DRAMPower with gem5 does not include
# IO and RD/WR termination power by default. This might be added as an
# additional feature in the future.
# timing behaviour and constraints - all in nanoseconds
# the base clock period of the DRAM
tCK = Param.Latency("Clock period")
# the amount of time in nanoseconds from issuing an activate command
# to the data being available in the row buffer for a read/write
tRCD = Param.Latency("RAS to CAS delay")
# the time from issuing a read/write command to seeing the actual data
tCL = Param.Latency("CAS latency")
# minimum time between a precharge and subsequent activate
tRP = Param.Latency("Row precharge time")
# minimum time between an activate and a precharge to the same row
tRAS = Param.Latency("ACT to PRE delay")
# minimum time between a write data transfer and a precharge
tWR = Param.Latency("Write recovery time")
# minimum time between a read and precharge command
tRTP = Param.Latency("Read to precharge")
# time to complete a burst transfer, typically the burst length
# divided by two due to the DDR bus, but by making it a parameter
# it is easier to also evaluate SDR memories like WideIO.
# This parameter has to account for burst length.
# Read/Write requests with data size larger than one full burst are broken
# down into multiple requests in the controller
# tBURST is equivalent to the CAS-to-CAS delay (tCCD)
# With bank group architectures, tBURST represents the CAS-to-CAS
# delay for bursts to different bank groups (tCCD_S)
tBURST = Param.Latency("Burst duration (for DDR burst length / 2 cycles)")
# CAS-to-CAS delay for bursts to the same bank group
# only utilized with bank group architectures; set to 0 for default case
# tBURST is equivalent to tCCD_S; no explicit parameter required
# for CAS-to-CAS delay for bursts to different bank groups
tCCD_L = Param.Latency("0ns", "Same bank group CAS to CAS delay")
# time taken to complete one refresh cycle (N rows in all banks)
tRFC = Param.Latency("Refresh cycle time")
# refresh command interval, how often a "ref" command needs
# to be sent. It is 7.8 us for a 64ms refresh requirement
tREFI = Param.Latency("Refresh command interval")
# write-to-read, same rank turnaround penalty
tWTR = Param.Latency("Write to read, same rank switching time")
# read-to-write, same rank turnaround penalty
tRTW = Param.Latency("Read to write, same rank switching time")
# rank-to-rank bus delay penalty
# this does not correlate to a memory timing parameter and encompasses:
# 1) RD-to-RD, 2) WR-to-WR, 3) RD-to-WR, and 4) WR-to-RD
# different rank bus delay
tCS = Param.Latency("Rank to rank switching time")
# minimum row activate to row activate delay time
tRRD = Param.Latency("ACT to ACT delay")
# only utilized with bank group architectures; set to 0 for default case
tRRD_L = Param.Latency("0ns", "Same bank group ACT to ACT delay")
# time window in which a maximum number of activates are allowed
# to take place, set to 0 to disable
tXAW = Param.Latency("X activation window")
activation_limit = Param.Unsigned("Max number of activates in window")
# time to exit power-down mode
# Exit power-down to next valid command delay
tXP = Param.Latency("0ns", "Power-up Delay")
# Exit Powerdown to commands requiring a locked DLL
tXPDLL = Param.Latency("0ns", "Power-up Delay with locked DLL")
# time to exit self-refresh mode
tXS = Param.Latency("0ns", "Self-refresh exit latency")
# time to exit self-refresh mode with locked DLL
tXSDLL = Param.Latency("0ns", "Self-refresh exit latency DLL")
# Currently rolled into other params
######################################################################
# tRC - assumed to be tRAS + tRP
# Power Behaviour and Constraints
# DRAMs like LPDDR and WideIO have 2 external voltage domains. These are
# defined as VDD and VDD2. Each current is defined for each voltage domain
# separately. For example, current IDD0 is active-precharge current for
# voltage domain VDD and current IDD02 is active-precharge current for
# voltage domain VDD2.
# By default all currents are set to 0mA. Users who are only interested in
# the performance of DRAMs can leave them at 0.
# Operating 1 Bank Active-Precharge current
IDD0 = Param.Current("0mA", "Active precharge current")
# Operating 1 Bank Active-Precharge current multiple voltage Range
IDD02 = Param.Current("0mA", "Active precharge current VDD2")
# Precharge Power-down Current: Slow exit
IDD2P0 = Param.Current("0mA", "Precharge Powerdown slow")
# Precharge Power-down Current: Slow exit multiple voltage Range
IDD2P02 = Param.Current("0mA", "Precharge Powerdown slow VDD2")
# Precharge Power-down Current: Fast exit
IDD2P1 = Param.Current("0mA", "Precharge Powerdown fast")
# Precharge Power-down Current: Fast exit multiple voltage Range
IDD2P12 = Param.Current("0mA", "Precharge Powerdown fast VDD2")
# Precharge Standby current
IDD2N = Param.Current("0mA", "Precharge Standby current")
# Precharge Standby current multiple voltage range
IDD2N2 = Param.Current("0mA", "Precharge Standby current VDD2")
# Active Power-down current: slow exit
IDD3P0 = Param.Current("0mA", "Active Powerdown slow")
# Active Power-down current: slow exit multiple voltage range
IDD3P02 = Param.Current("0mA", "Active Powerdown slow VDD2")
# Active Power-down current : fast exit
IDD3P1 = Param.Current("0mA", "Active Powerdown fast")
# Active Power-down current : fast exit multiple voltage range
IDD3P12 = Param.Current("0mA", "Active Powerdown fast VDD2")
# Active Standby current
IDD3N = Param.Current("0mA", "Active Standby current")
# Active Standby current multiple voltage range
IDD3N2 = Param.Current("0mA", "Active Standby current VDD2")
# Burst Read Operating Current
IDD4R = Param.Current("0mA", "READ current")
# Burst Read Operating Current multiple voltage range
IDD4R2 = Param.Current("0mA", "READ current VDD2")
# Burst Write Operating Current
IDD4W = Param.Current("0mA", "WRITE current")
# Burst Write Operating Current multiple voltage range
IDD4W2 = Param.Current("0mA", "WRITE current VDD2")
# Refresh Current
IDD5 = Param.Current("0mA", "Refresh current")
# Refresh Current multiple voltage range
IDD52 = Param.Current("0mA", "Refresh current VDD2")
# Self-Refresh Current
IDD6 = Param.Current("0mA", "Self-refresh Current")
# Self-Refresh Current multiple voltage range
IDD62 = Param.Current("0mA", "Self-refresh Current VDD2")
# Main voltage range of the DRAM
VDD = Param.Voltage("0V", "Main Voltage Range")
# Second voltage range defined by some DRAMs
VDD2 = Param.Voltage("0V", "2nd Voltage Range")
# A single DDR3-1600 x64 channel (one command and address bus), with
# timings based on a DDR3-1600 4 Gbit datasheet (Micron MT41J512M8) in
# an 8x8 configuration.
class DDR3_1600_x64(DRAMCtrl):
# size of device in bytes
device_size = '512MB'
# 8x8 configuration, 8 devices each with an 8-bit interface
device_bus_width = 8
# DDR3 is a BL8 device
burst_length = 8
# Each device has a page (row buffer) size of 1 Kbyte (1K columns x8)
device_rowbuffer_size = '1kB'
# 8x8 configuration, so 8 devices
devices_per_rank = 8
# Use two ranks
ranks_per_channel = 2
# DDR3 has 8 banks in all configurations
banks_per_rank = 8
# 800 MHz
tCK = '1.25ns'
# 8 beats across an x64 interface translates to 4 clocks @ 800 MHz
tBURST = '5ns'
# DDR3-1600 11-11-11
tRCD = '13.75ns'
tCL = '13.75ns'
tRP = '13.75ns'
tRAS = '35ns'
tRRD = '6ns'
tXAW = '30ns'
activation_limit = 4
tRFC = '260ns'
tWR = '15ns'
# Greater of 4 CK or 7.5 ns
tWTR = '7.5ns'
# Greater of 4 CK or 7.5 ns
tRTP = '7.5ns'
# Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns
tRTW = '2.5ns'
# Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns
tCS = '2.5ns'
# <=85C, half for >85C
tREFI = '7.8us'
# Current values from datasheet
IDD0 = '75mA'
IDD2N = '50mA'
IDD3N = '57mA'
IDD4W = '165mA'
IDD4R = '187mA'
IDD5 = '220mA'
VDD = '1.5V'
# A single DDR3-2133 x64 channel refining a selected subset of the
# options for the DDR-1600 configuration, based on the same DDR3-1600
# 4 Gbit datasheet (Micron MT41J512M8). Most parameters are kept
# consistent across the two configurations.
class DDR3_2133_x64(DDR3_1600_x64):
# 1066 MHz
tCK = '0.938ns'
# 8 beats across an x64 interface translates to 4 clocks @ 1066 MHz
tBURST = '3.752ns'
# DDR3-2133 14-14-14
tRCD = '13.09ns'
tCL = '13.09ns'
tRP = '13.09ns'
tRAS = '33ns'
tRRD = '5ns'
tXAW = '25ns'
# Current values from datasheet
IDD0 = '70mA'
IDD2N = '37mA'
IDD3N = '44mA'
IDD4W = '157mA'
IDD4R = '191mA'
IDD5 = '250mA'
VDD = '1.5V'
# A single DDR4-2400 x64 channel (one command and address bus), with
# timings based on a DDR4-2400 4 Gbit datasheet (Micron MT40A512M8)
# in an 8x8 configuration.
class DDR4_2400_x64(DRAMCtrl):
# size of device
device_size = '512MB'
# 8x8 configuration, 8 devices each with an 8-bit interface
device_bus_width = 8
# DDR4 is a BL8 device
burst_length = 8
# Each device has a page (row buffer) size of 1 Kbyte (1K columns x8)
device_rowbuffer_size = '1kB'
# 8x8 configuration, so 8 devices
devices_per_rank = 8
# Match our DDR3 configurations which is dual rank
ranks_per_channel = 2
# DDR4 has 2 (x16) or 4 (x4 and x8) bank groups
# Set to 4 for x4, x8 case
bank_groups_per_rank = 4
# DDR4 has 16 banks (4 bank groups) in all
# configurations. Currently we do not capture the additional
# constraints incurred by the bank groups
banks_per_rank = 16
# 1200 MHz
tCK = '0.833ns'
# 8 beats across an x64 interface translates to 4 clocks @ 1200 MHz
# tBURST is equivalent to the CAS-to-CAS delay (tCCD)
# With bank group architectures, tBURST represents the CAS-to-CAS
# delay for bursts to different bank groups (tCCD_S)
tBURST = '3.333ns'
# @2400 data rate, tCCD_L is 6 CK
# CAS-to-CAS delay for bursts to the same bank group
# tBURST is equivalent to tCCD_S; no explicit parameter required
# for CAS-to-CAS delay for bursts to different bank groups
tCCD_L = '5ns';
# DDR4-2400 17-17-17
tRCD = '14.16ns'
tCL = '14.16ns'
tRP = '14.16ns'
tRAS = '32ns'
# RRD_S (different bank group) for 1K page is MAX(4 CK, 3.3ns)
tRRD = '3.3ns'
# RRD_L (same bank group) for 1K page is MAX(4 CK, 4.9ns)
tRRD_L = '4.9ns';
tXAW = '21ns'
activation_limit = 4
tRFC = '350ns'
tWR = '15ns'
# Here using the average of WTR_S and WTR_L
tWTR = '5ns'
# Greater of 4 CK or 7.5 ns
tRTP = '7.5ns'
# Default same rank rd-to-wr bus turnaround to 2 CK, @1200 MHz = 1.666 ns
tRTW = '1.666ns'
# Default different rank bus delay to 2 CK, @1200 MHz = 1.666 ns
tCS = '1.666ns'
# <=85C, half for >85C
tREFI = '7.8us'
# Current values from datasheet
IDD0 = '64mA'
IDD02 = '4mA'
IDD2N = '50mA'
IDD3N = '67mA'
IDD3N2 = '3mA'
IDD4W = '180mA'
IDD4R = '160mA'
IDD5 = '192mA'
VDD = '1.2V'
VDD2 = '2.5V'
# A single LPDDR2-S4 x32 interface (one command/address bus), with
# default timings based on a LPDDR2-1066 4 Gbit part (Micron MT42L128M32D1)
# in a 1x32 configuration.
class LPDDR2_S4_1066_x32(DRAMCtrl):
# No DLL in LPDDR2
dll = False
# size of device
device_size = '512MB'
# 1x32 configuration, 1 device with a 32-bit interface
device_bus_width = 32
# LPDDR2_S4 is a BL4 and BL8 device
burst_length = 8
# Each device has a page (row buffer) size of 1KB
# (this depends on the memory density)
device_rowbuffer_size = '1kB'
# 1x32 configuration, so 1 device
devices_per_rank = 1
# Use a single rank
ranks_per_channel = 1
# LPDDR2-S4 has 8 banks in all configurations
banks_per_rank = 8
# 533 MHz
tCK = '1.876ns'
# Fixed at 15 ns
tRCD = '15ns'
# 8 CK read latency, 4 CK write latency @ 533 MHz, 1.876 ns cycle time
tCL = '15ns'
# Pre-charge one bank 15 ns (all banks 18 ns)
tRP = '15ns'
tRAS = '42ns'
tWR = '15ns'
tRTP = '7.5ns'
# 8 beats across an x32 DDR interface translates to 4 clocks @ 533 MHz.
# Note this is a BL8 DDR device.
# Requests larger than 32 bytes are broken down into multiple requests
# in the controller
tBURST = '7.5ns'
# LPDDR2-S4, 4 Gbit
tRFC = '130ns'
tREFI = '3.9us'
# Irrespective of speed grade, tWTR is 7.5 ns
tWTR = '7.5ns'
# Default same rank rd-to-wr bus turnaround to 2 CK, @533 MHz = 3.75 ns
tRTW = '3.75ns'
# Default different rank bus delay to 2 CK, @533 MHz = 3.75 ns
tCS = '3.75ns'
# Activate to activate irrespective of density and speed grade
tRRD = '10.0ns'
# Irrespective of density, tFAW is 50 ns
tXAW = '50ns'
activation_limit = 4
# Current values from datasheet
IDD0 = '15mA'
IDD02 = '70mA'
IDD2N = '2mA'
IDD2N2 = '30mA'
IDD3N = '2.5mA'
IDD3N2 = '30mA'
IDD4W = '10mA'
IDD4W2 = '190mA'
IDD4R = '3mA'
IDD4R2 = '220mA'
IDD5 = '40mA'
IDD52 = '150mA'
VDD = '1.8V'
VDD2 = '1.2V'
# A single WideIO x128 interface (one command and address bus), with
# default timings based on an estimated WIO-200 8 Gbit part.
class WideIO_200_x128(DRAMCtrl):
# No DLL for WideIO
dll = False
# size of device
device_size = '1024MB'
# 1x128 configuration, 1 device with a 128-bit interface
device_bus_width = 128
# This is a BL4 device
burst_length = 4
# Each device has a page (row buffer) size of 4KB
# (this depends on the memory density)
device_rowbuffer_size = '4kB'
# 1x128 configuration, so 1 device
devices_per_rank = 1
# Use one rank for a one-high die stack
ranks_per_channel = 1
# WideIO has 4 banks in all configurations
banks_per_rank = 4
# 200 MHz
tCK = '5ns'
# WIO-200
tRCD = '18ns'
tCL = '18ns'
tRP = '18ns'
tRAS = '42ns'
tWR = '15ns'
# Read to precharge is same as the burst
tRTP = '20ns'
# 4 beats across an x128 SDR interface translates to 4 clocks @ 200 MHz.
# Note this is a BL4 SDR device.
tBURST = '20ns'
# WIO 8 Gb
tRFC = '210ns'
# WIO 8 Gb, <=85C, half for >85C
tREFI = '3.9us'
# Greater of 2 CK or 15 ns, 2 CK @ 200 MHz = 10 ns
tWTR = '15ns'
# Default same rank rd-to-wr bus turnaround to 2 CK, @200 MHz = 10 ns
tRTW = '10ns'
# Default different rank bus delay to 2 CK, @200 MHz = 10 ns
tCS = '10ns'
# Activate to activate irrespective of density and speed grade
tRRD = '10.0ns'
# Two instead of four activation window
tXAW = '50ns'
activation_limit = 2
# The WideIO specification does not provide current information
# A single LPDDR3 x32 interface (one command/address bus), with
# default timings based on a LPDDR3-1600 4 Gbit part (Micron
# EDF8132A1MC) in a 1x32 configuration.
class LPDDR3_1600_x32(DRAMCtrl):
# No DLL for LPDDR3
dll = False
# size of device
device_size = '512MB'
# 1x32 configuration, 1 device with a 32-bit interface
device_bus_width = 32
# LPDDR3 is a BL8 device
burst_length = 8
# Each device has a page (row buffer) size of 4KB
device_rowbuffer_size = '4kB'
# 1x32 configuration, so 1 device
devices_per_rank = 1
# Technically the datasheet is a dual-rank package, but for
# comparison with the LPDDR2 config we stick to a single rank
ranks_per_channel = 1
# LPDDR3 has 8 banks in all configurations
banks_per_rank = 8
# 800 MHz
tCK = '1.25ns'
tRCD = '18ns'
# 12 CK read latency, 6 CK write latency @ 800 MHz, 1.25 ns cycle time
tCL = '15ns'
tRAS = '42ns'
tWR = '15ns'
# Greater of 4 CK or 7.5 ns, 4 CK @ 800 MHz = 5 ns
tRTP = '7.5ns'
# Pre-charge one bank 18 ns (all banks 21 ns)
tRP = '18ns'
# 8 beats across a x32 DDR interface translates to 4 clocks @ 800 MHz.
# Note this is a BL8 DDR device.
# Requests larger than 32 bytes are broken down into multiple requests
# in the controller
tBURST = '5ns'
# LPDDR3, 4 Gb
tRFC = '130ns'
tREFI = '3.9us'
# Irrespective of speed grade, tWTR is 7.5 ns
tWTR = '7.5ns'
# Default same rank rd-to-wr bus turnaround to 2 CK, @800 MHz = 2.5 ns
tRTW = '2.5ns'
# Default different rank bus delay to 2 CK, @800 MHz = 2.5 ns
tCS = '2.5ns'
# Activate to activate irrespective of density and speed grade
tRRD = '10.0ns'
# Irrespective of size, tFAW is 50 ns
tXAW = '50ns'
activation_limit = 4
# Current values from datasheet
IDD0 = '8mA'
IDD02 = '60mA'
IDD2N = '0.8mA'
IDD2N2 = '26mA'
IDD3N = '2mA'
IDD3N2 = '34mA'
IDD4W = '2mA'
IDD4W2 = '190mA'
IDD4R = '2mA'
IDD4R2 = '230mA'
IDD5 = '28mA'
IDD52 = '150mA'
VDD = '1.8V'
VDD2 = '1.2V'
# A single GDDR5 x64 interface, with
# default timings based on a GDDR5-4000 1 Gbit part (SK Hynix
# H5GQ1H24AFR) in a 2x32 configuration.
class GDDR5_4000_x64(DRAMCtrl):
# size of device
device_size = '128MB'
# 2x32 configuration, 1 device with a 32-bit interface
device_bus_width = 32
# GDDR5 is a BL8 device
burst_length = 8
# Each device has a page (row buffer) size of 2Kbits (256Bytes)
device_rowbuffer_size = '256B'
# 2x32 configuration, so 2 devices
devices_per_rank = 2
# assume single rank
ranks_per_channel = 1
# GDDR5 has 4 bank groups
bank_groups_per_rank = 4
# GDDR5 has 16 banks with 4 bank groups
banks_per_rank = 16
# 1000 MHz
tCK = '1ns'
# 8 beats across an x64 interface translates to 2 clocks @ 1000 MHz
# Data bus runs @2000 Mhz => DDR ( data runs at 4000 MHz )
# 8 beats at 4000 MHz = 2 beats at 1000 MHz
# tBURST is equivalent to the CAS-to-CAS delay (tCCD)
# With bank group architectures, tBURST represents the CAS-to-CAS
# delay for bursts to different bank groups (tCCD_S)
tBURST = '2ns'
# @1000MHz data rate, tCCD_L is 3 CK
# CAS-to-CAS delay for bursts to the same bank group
# tBURST is equivalent to tCCD_S; no explicit parameter required
# for CAS-to-CAS delay for bursts to different bank groups
tCCD_L = '3ns';
tRCD = '12ns'
# tCL is not directly found in datasheet and assumed equal tRCD
tCL = '12ns'
tRP = '12ns'
tRAS = '28ns'
# RRD_S (different bank group)
# RRD_S is 5.5 ns in datasheet.
# rounded to the next multiple of tCK
tRRD = '6ns'
# RRD_L (same bank group)
# RRD_L is 5.5 ns in datasheet.
# rounded to the next multiple of tCK
tRRD_L = '6ns'
tXAW = '23ns'
# tXAW < 4 x tRRD.
# Therefore, activation limit is set to 0
activation_limit = 0
tRFC = '65ns'
tWR = '12ns'
# Here using the average of WTR_S and WTR_L
tWTR = '5ns'
# Read-to-Precharge 2 CK
tRTP = '2ns'
# Assume 2 cycles
tRTW = '2ns'
# Default different rank bus delay to 2 CK, @1000 MHz = 2 ns
tCS = '2ns'
tREFI = '3.9us'