gem5/src/cpu/simple/timing.cc
Ron Dreslinski 5cb1840b31 Fixes for functional path.
If the cpu needs to update any state when it gets a functional write (LSQ??)
then that code needs to be written.

src/cpu/o3/fetch_impl.hh:
src/cpu/o3/lsq_impl.hh:
src/cpu/ozone/front_end_impl.hh:
src/cpu/ozone/lw_lsq_impl.hh:
src/cpu/simple/atomic.cc:
src/cpu/simple/timing.cc:
    CPU's can recieve functional accesses, they need to determine if they need to do anything with them.
src/mem/bus.cc:
src/mem/bus.hh:
    Make the fuctional path do the correct tye of snoop

--HG--
extra : convert_revision : 70d09f954b907a8aa9b8137579cd2b06e02ae2ff
2006-10-08 20:30:42 -04:00

702 lines
18 KiB
C++

/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Steve Reinhardt
*/
#include "arch/locked_mem.hh"
#include "arch/utility.hh"
#include "cpu/exetrace.hh"
#include "cpu/simple/timing.hh"
#include "mem/packet_impl.hh"
#include "sim/builder.hh"
#include "sim/system.hh"
using namespace std;
using namespace TheISA;
Port *
TimingSimpleCPU::getPort(const std::string &if_name, int idx)
{
if (if_name == "dcache_port")
return &dcachePort;
else if (if_name == "icache_port")
return &icachePort;
else
panic("No Such Port\n");
}
void
TimingSimpleCPU::init()
{
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
// initialize CPU, including PC
TheISA::initCPU(tc, tc->readCpuId());
}
#endif
}
Tick
TimingSimpleCPU::CpuPort::recvAtomic(Packet *pkt)
{
panic("TimingSimpleCPU doesn't expect recvAtomic callback!");
return curTick;
}
void
TimingSimpleCPU::CpuPort::recvFunctional(Packet *pkt)
{
//No internal storage to update, jusst return
return;
}
void
TimingSimpleCPU::CpuPort::recvStatusChange(Status status)
{
if (status == RangeChange)
return;
panic("TimingSimpleCPU doesn't expect recvStatusChange callback!");
}
void
TimingSimpleCPU::CpuPort::TickEvent::schedule(Packet *_pkt, Tick t)
{
pkt = _pkt;
Event::schedule(t);
}
TimingSimpleCPU::TimingSimpleCPU(Params *p)
: BaseSimpleCPU(p), icachePort(this, p->clock), dcachePort(this, p->clock),
cpu_id(p->cpu_id)
{
_status = Idle;
ifetch_pkt = dcache_pkt = NULL;
drainEvent = NULL;
fetchEvent = NULL;
changeState(SimObject::Running);
}
TimingSimpleCPU::~TimingSimpleCPU()
{
}
void
TimingSimpleCPU::serialize(ostream &os)
{
SimObject::State so_state = SimObject::getState();
SERIALIZE_ENUM(so_state);
BaseSimpleCPU::serialize(os);
}
void
TimingSimpleCPU::unserialize(Checkpoint *cp, const string &section)
{
SimObject::State so_state;
UNSERIALIZE_ENUM(so_state);
BaseSimpleCPU::unserialize(cp, section);
}
unsigned int
TimingSimpleCPU::drain(Event *drain_event)
{
// TimingSimpleCPU is ready to drain if it's not waiting for
// an access to complete.
if (status() == Idle || status() == Running || status() == SwitchedOut) {
changeState(SimObject::Drained);
return 0;
} else {
changeState(SimObject::Draining);
drainEvent = drain_event;
return 1;
}
}
void
TimingSimpleCPU::resume()
{
if (_status != SwitchedOut && _status != Idle) {
// Delete the old event if it existed.
if (fetchEvent) {
if (fetchEvent->scheduled())
fetchEvent->deschedule();
delete fetchEvent;
}
fetchEvent =
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
fetchEvent->schedule(curTick);
}
assert(system->getMemoryMode() == System::Timing);
changeState(SimObject::Running);
}
void
TimingSimpleCPU::switchOut()
{
assert(status() == Running || status() == Idle);
_status = SwitchedOut;
// If we've been scheduled to resume but are then told to switch out,
// we'll need to cancel it.
if (fetchEvent && fetchEvent->scheduled())
fetchEvent->deschedule();
}
void
TimingSimpleCPU::takeOverFrom(BaseCPU *oldCPU)
{
BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ThreadContexts are active, mark the CPU as
// running and schedule its tick event.
for (int i = 0; i < threadContexts.size(); ++i) {
ThreadContext *tc = threadContexts[i];
if (tc->status() == ThreadContext::Active && _status != Running) {
_status = Running;
break;
}
}
}
void
TimingSimpleCPU::activateContext(int thread_num, int delay)
{
assert(thread_num == 0);
assert(thread);
assert(_status == Idle);
notIdleFraction++;
_status = Running;
// kick things off by initiating the fetch of the next instruction
fetchEvent =
new EventWrapper<TimingSimpleCPU, &TimingSimpleCPU::fetch>(this, false);
fetchEvent->schedule(curTick + cycles(delay));
}
void
TimingSimpleCPU::suspendContext(int thread_num)
{
assert(thread_num == 0);
assert(thread);
assert(_status == Running);
// just change status to Idle... if status != Running,
// completeInst() will not initiate fetch of next instruction.
notIdleFraction--;
_status = Idle;
}
template <class T>
Fault
TimingSimpleCPU::read(Addr addr, T &data, unsigned flags)
{
Request *req =
new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
cpu_id, /* thread ID */ 0);
if (traceData) {
traceData->setAddr(req->getVaddr());
}
// translate to physical address
Fault fault = thread->translateDataReadReq(req);
// Now do the access.
if (fault == NoFault) {
Packet *pkt =
new Packet(req, Packet::ReadReq, Packet::Broadcast);
pkt->dataDynamic<T>(new T);
if (!dcachePort.sendTiming(pkt)) {
_status = DcacheRetry;
dcache_pkt = pkt;
} else {
_status = DcacheWaitResponse;
// memory system takes ownership of packet
dcache_pkt = NULL;
}
}
// This will need a new way to tell if it has a dcache attached.
if (req->isUncacheable())
recordEvent("Uncached Read");
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
TimingSimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
TimingSimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
TimingSimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
Request *req =
new Request(/* asid */ 0, addr, sizeof(T), flags, thread->readPC(),
cpu_id, /* thread ID */ 0);
// translate to physical address
Fault fault = thread->translateDataWriteReq(req);
// Now do the access.
if (fault == NoFault) {
assert(dcache_pkt == NULL);
dcache_pkt = new Packet(req, Packet::WriteReq, Packet::Broadcast);
dcache_pkt->allocate();
dcache_pkt->set(data);
bool do_access = true; // flag to suppress cache access
if (req->isLocked()) {
do_access = TheISA::handleLockedWrite(thread, req);
}
if (do_access) {
if (!dcachePort.sendTiming(dcache_pkt)) {
_status = DcacheRetry;
} else {
_status = DcacheWaitResponse;
// memory system takes ownership of packet
dcache_pkt = NULL;
}
}
}
// This will need a new way to tell if it's hooked up to a cache or not.
if (req->isUncacheable())
recordEvent("Uncached Write");
// If the write needs to have a fault on the access, consider calling
// changeStatus() and changing it to "bad addr write" or something.
return fault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
TimingSimpleCPU::write(uint64_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint32_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint16_t data, Addr addr,
unsigned flags, uint64_t *res);
template
Fault
TimingSimpleCPU::write(uint8_t data, Addr addr,
unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
TimingSimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
TimingSimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
void
TimingSimpleCPU::fetch()
{
checkForInterrupts();
Request *ifetch_req = new Request();
ifetch_req->setThreadContext(cpu_id, /* thread ID */ 0);
Fault fault = setupFetchRequest(ifetch_req);
ifetch_pkt = new Packet(ifetch_req, Packet::ReadReq, Packet::Broadcast);
ifetch_pkt->dataStatic(&inst);
if (fault == NoFault) {
if (!icachePort.sendTiming(ifetch_pkt)) {
// Need to wait for retry
_status = IcacheRetry;
} else {
// Need to wait for cache to respond
_status = IcacheWaitResponse;
// ownership of packet transferred to memory system
ifetch_pkt = NULL;
}
} else {
// fetch fault: advance directly to next instruction (fault handler)
advanceInst(fault);
}
}
void
TimingSimpleCPU::advanceInst(Fault fault)
{
advancePC(fault);
if (_status == Running) {
// kick off fetch of next instruction... callback from icache
// response will cause that instruction to be executed,
// keeping the CPU running.
fetch();
}
}
void
TimingSimpleCPU::completeIfetch(Packet *pkt)
{
// received a response from the icache: execute the received
// instruction
assert(pkt->result == Packet::Success);
assert(_status == IcacheWaitResponse);
_status = Running;
delete pkt->req;
delete pkt;
if (getState() == SimObject::Draining) {
completeDrain();
return;
}
preExecute();
if (curStaticInst->isMemRef() && !curStaticInst->isDataPrefetch()) {
// load or store: just send to dcache
Fault fault = curStaticInst->initiateAcc(this, traceData);
if (_status != Running) {
// instruction will complete in dcache response callback
assert(_status == DcacheWaitResponse || _status == DcacheRetry);
assert(fault == NoFault);
} else {
if (fault == NoFault) {
// early fail on store conditional: complete now
assert(dcache_pkt != NULL);
fault = curStaticInst->completeAcc(dcache_pkt, this,
traceData);
delete dcache_pkt->req;
delete dcache_pkt;
dcache_pkt = NULL;
}
postExecute();
advanceInst(fault);
}
} else {
// non-memory instruction: execute completely now
Fault fault = curStaticInst->execute(this, traceData);
postExecute();
advanceInst(fault);
}
}
void
TimingSimpleCPU::IcachePort::ITickEvent::process()
{
cpu->completeIfetch(pkt);
}
bool
TimingSimpleCPU::IcachePort::recvTiming(Packet *pkt)
{
// delay processing of returned data until next CPU clock edge
Tick time = pkt->req->getTime();
while (time < curTick)
time += lat;
if (time == curTick)
cpu->completeIfetch(pkt);
else
tickEvent.schedule(pkt, time);
return true;
}
void
TimingSimpleCPU::IcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->ifetch_pkt != NULL);
assert(cpu->_status == IcacheRetry);
Packet *tmp = cpu->ifetch_pkt;
if (sendTiming(tmp)) {
cpu->_status = IcacheWaitResponse;
cpu->ifetch_pkt = NULL;
}
}
void
TimingSimpleCPU::completeDataAccess(Packet *pkt)
{
// received a response from the dcache: complete the load or store
// instruction
assert(pkt->result == Packet::Success);
assert(_status == DcacheWaitResponse);
_status = Running;
if (getState() == SimObject::Draining) {
completeDrain();
delete pkt->req;
delete pkt;
return;
}
Fault fault = curStaticInst->completeAcc(pkt, this, traceData);
if (pkt->isRead() && pkt->req->isLocked()) {
TheISA::handleLockedRead(thread, pkt->req);
}
delete pkt->req;
delete pkt;
postExecute();
advanceInst(fault);
}
void
TimingSimpleCPU::completeDrain()
{
DPRINTF(Config, "Done draining\n");
changeState(SimObject::Drained);
drainEvent->process();
}
bool
TimingSimpleCPU::DcachePort::recvTiming(Packet *pkt)
{
// delay processing of returned data until next CPU clock edge
Tick time = pkt->req->getTime();
while (time < curTick)
time += lat;
if (time == curTick)
cpu->completeDataAccess(pkt);
else
tickEvent.schedule(pkt, time);
return true;
}
void
TimingSimpleCPU::DcachePort::DTickEvent::process()
{
cpu->completeDataAccess(pkt);
}
void
TimingSimpleCPU::DcachePort::recvRetry()
{
// we shouldn't get a retry unless we have a packet that we're
// waiting to transmit
assert(cpu->dcache_pkt != NULL);
assert(cpu->_status == DcacheRetry);
Packet *tmp = cpu->dcache_pkt;
if (sendTiming(tmp)) {
cpu->_status = DcacheWaitResponse;
// memory system takes ownership of packet
cpu->dcache_pkt = NULL;
}
}
////////////////////////////////////////////////////////////////////////
//
// TimingSimpleCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
Param<Tick> progress_interval;
SimObjectParam<MemObject *> mem;
SimObjectParam<System *> system;
Param<int> cpu_id;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
Param<bool> defer_registration;
Param<int> width;
Param<bool> function_trace;
Param<Tick> function_trace_start;
Param<bool> simulate_stalls;
END_DECLARE_SIM_OBJECT_PARAMS(TimingSimpleCPU)
BEGIN_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
INIT_PARAM(progress_interval, "Progress interval"),
INIT_PARAM(mem, "memory"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(width, "cpu width"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace"),
INIT_PARAM(simulate_stalls, "Simulate cache stall cycles")
END_INIT_SIM_OBJECT_PARAMS(TimingSimpleCPU)
CREATE_SIM_OBJECT(TimingSimpleCPU)
{
TimingSimpleCPU::Params *params = new TimingSimpleCPU::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = max_insts_any_thread;
params->max_insts_all_threads = max_insts_all_threads;
params->max_loads_any_thread = max_loads_any_thread;
params->max_loads_all_threads = max_loads_all_threads;
params->progress_interval = progress_interval;
params->deferRegistration = defer_registration;
params->clock = clock;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->mem = mem;
params->system = system;
params->cpu_id = cpu_id;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->profile = profile;
#else
params->process = workload;
#endif
TimingSimpleCPU *cpu = new TimingSimpleCPU(params);
return cpu;
}
REGISTER_SIM_OBJECT("TimingSimpleCPU", TimingSimpleCPU)