gem5/cpu/beta_cpu/commit_impl.hh
Kevin Lim 90d4436351 Slight fixes, add in commit trace flag.
base/traceflags.py:
    Add new commit rate trace flag.
build/SConstruct:
    Add extra option for efence.
cpu/beta_cpu/alpha_full_cpu_impl.hh:
    Use function calls instead of direct indexing (avoids confusion).
cpu/beta_cpu/commit_impl.hh:
    Add commit rate trace output (might not be worthwhile in the future).
cpu/beta_cpu/decode_impl.hh:
    Remove some older hacks.  Fix it so that the isntruction properly sets its next
    PC to the one calculated by the branch.
cpu/beta_cpu/fetch_impl.hh:
    Remove old commented code.
cpu/beta_cpu/iew_impl.hh:
    Add extra check to ensure that the instruction is valid.
cpu/beta_cpu/regfile.hh:
    Include trace file.

--HG--
extra : convert_revision : 4ee1dc88f8a5ed9b65486c6c111a3718a8040e42
2005-01-11 18:52:29 -05:00

509 lines
17 KiB
C++

// @todo: Bug when something reaches execute, and mispredicts, but is never
// put into the ROB because the ROB is full. Need rename stage to predict
// the free ROB entries better.
#ifndef __COMMIT_IMPL_HH__
#define __COMMIT_IMPL_HH__
#include "base/timebuf.hh"
#include "cpu/beta_cpu/commit.hh"
#include "cpu/exetrace.hh"
template <class Impl>
SimpleCommit<Impl>::SimpleCommit(Params &params)
: dcacheInterface(params.dcacheInterface),
iewToCommitDelay(params.iewToCommitDelay),
renameToROBDelay(params.renameToROBDelay),
renameWidth(params.renameWidth),
iewWidth(params.executeWidth),
commitWidth(params.commitWidth)
{
_status = Idle;
}
template <class Impl>
void
SimpleCommit<Impl>::regStats()
{
commitCommittedInsts
.name(name() + ".commitCommittedInsts")
.desc("The number of committed instructions")
.prereq(commitCommittedInsts);
commitSquashedInsts
.name(name() + ".commitSquashedInsts")
.desc("The number of squashed insts skipped by commit")
.prereq(commitSquashedInsts);
commitSquashEvents
.name(name() + ".commitSquashEvents")
.desc("The number of times commit is told to squash")
.prereq(commitSquashEvents);
commitNonSpecStalls
.name(name() + ".commitNonSpecStalls")
.desc("The number of times commit has been forced to stall to "
"communicate backwards")
.prereq(commitNonSpecStalls);
commitCommittedBranches
.name(name() + ".commitCommittedBranches")
.desc("The number of committed branches")
.prereq(commitCommittedBranches);
commitCommittedLoads
.name(name() + ".commitCommittedLoads")
.desc("The number of committed loads")
.prereq(commitCommittedLoads);
commitCommittedMemRefs
.name(name() + ".commitCommittedMemRefs")
.desc("The number of committed memory references")
.prereq(commitCommittedMemRefs);
branchMispredicts
.name(name() + ".branchMispredicts")
.desc("The number of times a branch was mispredicted")
.prereq(branchMispredicts);
n_committed_dist
.init(0,commitWidth,1)
.name(name() + ".COM:committed_per_cycle")
.desc("Number of insts commited each cycle")
.flags(Stats::pdf)
;
}
template <class Impl>
void
SimpleCommit<Impl>::setCPU(FullCPU *cpu_ptr)
{
DPRINTF(Commit, "Commit: Setting CPU pointer.\n");
cpu = cpu_ptr;
}
template <class Impl>
void
SimpleCommit<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
{
DPRINTF(Commit, "Commit: Setting time buffer pointer.\n");
timeBuffer = tb_ptr;
// Setup wire to send information back to IEW.
toIEW = timeBuffer->getWire(0);
// Setup wire to read data from IEW (for the ROB).
robInfoFromIEW = timeBuffer->getWire(-iewToCommitDelay);
}
template <class Impl>
void
SimpleCommit<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
{
DPRINTF(Commit, "Commit: Setting rename queue pointer.\n");
renameQueue = rq_ptr;
// Setup wire to get instructions from rename (for the ROB).
fromRename = renameQueue->getWire(-renameToROBDelay);
}
template <class Impl>
void
SimpleCommit<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
{
DPRINTF(Commit, "Commit: Setting IEW queue pointer.\n");
iewQueue = iq_ptr;
// Setup wire to get instructions from IEW.
fromIEW = iewQueue->getWire(-iewToCommitDelay);
}
template <class Impl>
void
SimpleCommit<Impl>::setROB(ROB *rob_ptr)
{
DPRINTF(Commit, "Commit: Setting ROB pointer.\n");
rob = rob_ptr;
}
template <class Impl>
void
SimpleCommit<Impl>::tick()
{
// If the ROB is currently in its squash sequence, then continue
// to squash. In this case, commit does not do anything. Otherwise
// run commit.
if (_status == ROBSquashing) {
if (rob->isDoneSquashing()) {
_status = Running;
} else {
rob->doSquash();
// Send back sequence number of tail of ROB, so other stages
// can squash younger instructions. Note that really the only
// stage that this is important for is the IEW stage; other
// stages can just clear all their state as long as selective
// replay isn't used.
toIEW->commitInfo.doneSeqNum = rob->readTailSeqNum();
toIEW->commitInfo.robSquashing = true;
}
} else {
commit();
}
markCompletedInsts();
// Writeback number of free ROB entries here.
DPRINTF(Commit, "Commit: ROB has %d free entries.\n",
rob->numFreeEntries());
toIEW->commitInfo.freeROBEntries = rob->numFreeEntries();
}
template <class Impl>
void
SimpleCommit<Impl>::commit()
{
//////////////////////////////////////
// Check for interrupts
//////////////////////////////////////
// Process interrupts if interrupts are enabled and not in PAL mode.
// Take the PC from commit and write it to the IPR, then squash. The
// interrupt completing will take care of restoring the PC from that value
// in the IPR. Look at IPR[EXC_ADDR];
// hwrei() is what resets the PC to the place where instruction execution
// beings again.
#ifdef FULL_SYSTEM
if (ISA::check_interrupts &&
cpu->check_interrupts() &&
!xc->inPalMode()) {
// Will need to squash all instructions currently in flight and have
// the interrupt handler restart at the last non-committed inst.
// Most of that can be handled through the trap() function. The
// processInterrupts() function really just checks for interrupts
// and then calls trap() if there is an interrupt present.
// CPU will handle implementation of the interrupt.
cpu->processInterrupts();
}
#endif // FULL_SYSTEM
////////////////////////////////////
// Check for squash signal, handle that first
////////////////////////////////////
// Want to mainly check if the IEW stage is telling the ROB to squash.
// Should I also check if the commit stage is telling the ROB to squah?
// This might be necessary to keep the same timing between the IQ and
// the ROB...
if (fromIEW->squash) {
DPRINTF(Commit, "Commit: Squashing instructions in the ROB.\n");
_status = ROBSquashing;
InstSeqNum squashed_inst = fromIEW->squashedSeqNum;
rob->squash(squashed_inst);
// Send back the sequence number of the squashed instruction.
toIEW->commitInfo.doneSeqNum = squashed_inst;
// Send back the squash signal to tell stages that they should squash.
toIEW->commitInfo.squash = true;
// Send back the rob squashing signal so other stages know that the
// ROB is in the process of squashing.
toIEW->commitInfo.robSquashing = true;
toIEW->commitInfo.branchMispredict = fromIEW->branchMispredict;
toIEW->commitInfo.branchTaken = fromIEW->branchTaken;
toIEW->commitInfo.nextPC = fromIEW->nextPC;
toIEW->commitInfo.mispredPC = fromIEW->mispredPC;
toIEW->commitInfo.globalHist = fromIEW->globalHist;
if (toIEW->commitInfo.branchMispredict) {
++branchMispredicts;
}
}
if (_status != ROBSquashing) {
// If we're not currently squashing, then get instructions.
getInsts();
// Try to commit any instructions.
commitInsts();
}
// If the ROB is empty, we can set this stage to idle. Use this
// in the future when the Idle status will actually be utilized.
#if 0
if (rob->isEmpty()) {
DPRINTF(Commit, "Commit: ROB is empty. Status changed to idle.\n");
_status = Idle;
// Schedule an event so that commit will actually wake up
// once something gets put in the ROB.
}
#endif
}
// Loop that goes through as many instructions in the ROB as possible and
// tries to commit them. The actual work for committing is done by the
// commitHead() function.
template <class Impl>
void
SimpleCommit<Impl>::commitInsts()
{
////////////////////////////////////
// Handle commit
// Note that commit will be handled prior to the ROB so that the ROB
// only tries to commit instructions it has in this current cycle, and
// not instructions it is writing in during this cycle.
// Can't commit and squash things at the same time...
////////////////////////////////////
DynInstPtr head_inst = rob->readHeadInst();
unsigned num_committed = 0;
// Commit as many instructions as possible until the commit bandwidth
// limit is reached, or it becomes impossible to commit any more.
while (!rob->isEmpty() &&
head_inst->readyToCommit() &&
num_committed < commitWidth)
{
DPRINTF(Commit, "Commit: Trying to commit head instruction.\n");
// If the head instruction is squashed, it is ready to retire at any
// time. However, we need to avoid updating any other state
// incorrectly if it's already been squashed.
if (head_inst->isSquashed()) {
// Hack to avoid the instruction being retired (and deleted) if
// it hasn't been through the IEW stage yet.
if (!head_inst->isExecuted()) {
break;
}
DPRINTF(Commit, "Commit: Retiring squashed instruction from "
"ROB.\n");
// Tell ROB to retire head instruction. This retires the head
// inst in the ROB without affecting any other stages.
rob->retireHead();
++commitSquashedInsts;
} else {
// Increment the total number of non-speculative instructions
// executed.
// Hack for now: it really shouldn't happen until after the
// commit is deemed to be successful, but this count is needed
// for syscalls.
cpu->funcExeInst++;
// Try to commit the head instruction.
bool commit_success = commitHead(head_inst, num_committed);
// Update what instruction we are looking at if the commit worked.
if (commit_success) {
++num_committed;
// Send back which instruction has been committed.
// @todo: Update this later when a wider pipeline is used.
// Hmm, can't really give a pointer here...perhaps the
// sequence number instead (copy).
toIEW->commitInfo.doneSeqNum = head_inst->seqNum;
++commitCommittedInsts;
if (!head_inst->isNop()) {
cpu->instDone();
}
} else {
break;
}
}
// Update the pointer to read the next instruction in the ROB.
head_inst = rob->readHeadInst();
}
DPRINTF(CommitRate, "%i\n", num_committed);
n_committed_dist.sample(num_committed);
}
template <class Impl>
bool
SimpleCommit<Impl>::commitHead(DynInstPtr &head_inst, unsigned inst_num)
{
// Make sure instruction is valid
assert(head_inst);
// If the instruction is not executed yet, then it is a non-speculative
// or store inst. Signal backwards that it should be executed.
if (!head_inst->isExecuted()) {
// Keep this number correct. We have not yet actually executed
// and committed this instruction.
cpu->funcExeInst--;
if (head_inst->isStore() || head_inst->isNonSpeculative()) {
DPRINTF(Commit, "Commit: Encountered a store or non-speculative "
"instruction at the head of the ROB, PC %#x.\n",
head_inst->readPC());
toIEW->commitInfo.nonSpecSeqNum = head_inst->seqNum;
// Change the instruction so it won't try to commit again until
// it is executed.
head_inst->clearCanCommit();
++commitNonSpecStalls;
return false;
} else {
panic("Commit: Trying to commit un-executed instruction "
"of unknown type!\n");
}
}
// Now check if it's one of the special trap or barrier or
// serializing instructions.
if (head_inst->isThreadSync() ||
head_inst->isSerializing() ||
head_inst->isMemBarrier() ||
head_inst->isWriteBarrier() )
{
// Not handled for now. Mem barriers and write barriers are safe
// to simply let commit as memory accesses only happen once they
// reach the head of commit. Not sure about the other two.
panic("Serializing or barrier instructions"
" are not handled yet.\n");
}
// Check if the instruction caused a fault. If so, trap.
if (head_inst->getFault() != No_Fault) {
if (!head_inst->isNop()) {
#ifdef FULL_SYSTEM
cpu->trap(fault);
#else // !FULL_SYSTEM
panic("fault (%d) detected @ PC %08p", head_inst->getFault(),
head_inst->PC);
#endif // FULL_SYSTEM
}
}
// Check if we're really ready to commit. If not then return false.
// I'm pretty sure all instructions should be able to commit if they've
// reached this far. For now leave this in as a check.
if(!rob->isHeadReady()) {
panic("Commit: Unable to commit head instruction!\n");
return false;
}
// If it's a branch, then send back branch prediction update info
// to the fetch stage.
// This should be handled in the iew stage if a mispredict happens...
if (head_inst->isControl()) {
#if 0
toIEW->nextPC = head_inst->readPC();
//Maybe switch over to BTB incorrect.
toIEW->btbMissed = head_inst->btbMiss();
toIEW->target = head_inst->nextPC;
//Maybe also include global history information.
//This simple version will have no branch prediction however.
#endif
++commitCommittedBranches;
}
#if 0
// Check if the instruction has a destination register.
// If so add the previous physical register of its logical register's
// destination to the free list through the time buffer.
for (int i = 0; i < head_inst->numDestRegs(); i++)
{
toIEW->commitInfo.freeRegs.push_back(head_inst->prevDestRegIdx(i));
}
#endif
// Explicit communication back to the LDSTQ that a load has been committed
// and can be removed from the LDSTQ. Stores don't need this because
// the LDSTQ will already have been told that a store has reached the head
// of the ROB. Consider including communication if it's a store as well
// to keep things orthagonal.
if (head_inst->isMemRef()) {
++commitCommittedMemRefs;
if (head_inst->isLoad()) {
toIEW->commitInfo.commitIsLoad = true;
++commitCommittedLoads;
}
}
// Now that the instruction is going to be committed, finalize its
// trace data.
if (head_inst->traceData) {
head_inst->traceData->finalize();
}
//Finally clear the head ROB entry.
rob->retireHead();
// Return true to indicate that we have committed an instruction.
return true;
}
template <class Impl>
void
SimpleCommit<Impl>::getInsts()
{
//////////////////////////////////////
// Handle ROB functions
//////////////////////////////////////
// Read any issued instructions and place them into the ROB. Do this
// prior to squashing to avoid having instructions in the ROB that
// don't get squashed properly.
int insts_to_process = min((int)renameWidth, fromRename->size);
for (int inst_num = 0;
inst_num < insts_to_process;
++inst_num)
{
if (!fromRename->insts[inst_num]->isSquashed()) {
DPRINTF(Commit, "Commit: Inserting PC %#x into ROB.\n",
fromRename->insts[inst_num]->readPC());
rob->insertInst(fromRename->insts[inst_num]);
} else {
DPRINTF(Commit, "Commit: Instruction %i PC %#x was "
"squashed, skipping.\n",
fromRename->insts[inst_num]->seqNum,
fromRename->insts[inst_num]->readPC());
}
}
}
template <class Impl>
void
SimpleCommit<Impl>::markCompletedInsts()
{
// Grab completed insts out of the IEW instruction queue, and mark
// instructions completed within the ROB.
for (int inst_num = 0;
inst_num < iewWidth && fromIEW->insts[inst_num];
++inst_num)
{
DPRINTF(Commit, "Commit: Marking PC %#x, SN %i ready within ROB.\n",
fromIEW->insts[inst_num]->readPC(),
fromIEW->insts[inst_num]->seqNum);
// Mark the instruction as ready to commit.
fromIEW->insts[inst_num]->setCanCommit();
}
}
template <class Impl>
uint64_t
SimpleCommit<Impl>::readCommitPC()
{
return rob->readHeadPC();
}
#endif // __COMMIT_IMPL_HH__