gem5/src/mem/dramsim2.cc
Andreas Hansson 8bc925e36d mem: Align rules for sinking inhibited packets at the slave
This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.

In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
2015-11-06 03:26:35 -05:00

398 lines
12 KiB
C++

/*
* Copyright (c) 2013 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Andreas Hansson
*/
#include "DRAMSim2/Callback.h"
#include "base/callback.hh"
#include "base/trace.hh"
#include "debug/DRAMSim2.hh"
#include "debug/Drain.hh"
#include "mem/dramsim2.hh"
#include "sim/system.hh"
DRAMSim2::DRAMSim2(const Params* p) :
AbstractMemory(p),
port(name() + ".port", *this),
wrapper(p->deviceConfigFile, p->systemConfigFile, p->filePath,
p->traceFile, p->range.size() / 1024 / 1024, p->enableDebug),
retryReq(false), retryResp(false), startTick(0),
nbrOutstandingReads(0), nbrOutstandingWrites(0),
sendResponseEvent(this), tickEvent(this)
{
DPRINTF(DRAMSim2,
"Instantiated DRAMSim2 with clock %d ns and queue size %d\n",
wrapper.clockPeriod(), wrapper.queueSize());
DRAMSim::TransactionCompleteCB* read_cb =
new DRAMSim::Callback<DRAMSim2, void, unsigned, uint64_t, uint64_t>(
this, &DRAMSim2::readComplete);
DRAMSim::TransactionCompleteCB* write_cb =
new DRAMSim::Callback<DRAMSim2, void, unsigned, uint64_t, uint64_t>(
this, &DRAMSim2::writeComplete);
wrapper.setCallbacks(read_cb, write_cb);
// Register a callback to compensate for the destructor not
// being called. The callback prints the DRAMSim2 stats.
Callback* cb = new MakeCallback<DRAMSim2Wrapper,
&DRAMSim2Wrapper::printStats>(wrapper);
registerExitCallback(cb);
}
void
DRAMSim2::init()
{
AbstractMemory::init();
if (!port.isConnected()) {
fatal("DRAMSim2 %s is unconnected!\n", name());
} else {
port.sendRangeChange();
}
if (system()->cacheLineSize() != wrapper.burstSize())
fatal("DRAMSim2 burst size %d does not match cache line size %d\n",
wrapper.burstSize(), system()->cacheLineSize());
}
void
DRAMSim2::startup()
{
startTick = curTick();
// kick off the clock ticks
schedule(tickEvent, clockEdge());
}
void
DRAMSim2::sendResponse()
{
assert(!retryResp);
assert(!responseQueue.empty());
DPRINTF(DRAMSim2, "Attempting to send response\n");
bool success = port.sendTimingResp(responseQueue.front());
if (success) {
responseQueue.pop_front();
DPRINTF(DRAMSim2, "Have %d read, %d write, %d responses outstanding\n",
nbrOutstandingReads, nbrOutstandingWrites,
responseQueue.size());
if (!responseQueue.empty() && !sendResponseEvent.scheduled())
schedule(sendResponseEvent, curTick());
if (nbrOutstanding() == 0)
signalDrainDone();
} else {
retryResp = true;
DPRINTF(DRAMSim2, "Waiting for response retry\n");
assert(!sendResponseEvent.scheduled());
}
}
unsigned int
DRAMSim2::nbrOutstanding() const
{
return nbrOutstandingReads + nbrOutstandingWrites + responseQueue.size();
}
void
DRAMSim2::tick()
{
wrapper.tick();
// is the connected port waiting for a retry, if so check the
// state and send a retry if conditions have changed
if (retryReq && nbrOutstanding() < wrapper.queueSize()) {
retryReq = false;
port.sendRetryReq();
}
schedule(tickEvent, curTick() + wrapper.clockPeriod() * SimClock::Int::ns);
}
Tick
DRAMSim2::recvAtomic(PacketPtr pkt)
{
access(pkt);
// 50 ns is just an arbitrary value at this point
return pkt->memInhibitAsserted() ? 0 : 50000;
}
void
DRAMSim2::recvFunctional(PacketPtr pkt)
{
pkt->pushLabel(name());
functionalAccess(pkt);
// potentially update the packets in our response queue as well
for (auto i = responseQueue.begin(); i != responseQueue.end(); ++i)
pkt->checkFunctional(*i);
pkt->popLabel();
}
bool
DRAMSim2::recvTimingReq(PacketPtr pkt)
{
// sink inhibited packets without further action
if (pkt->memInhibitAsserted()) {
pendingDelete.reset(pkt);
return true;
}
// we should not get a new request after committing to retry the
// current one, but unfortunately the CPU violates this rule, so
// simply ignore it for now
if (retryReq)
return false;
// if we cannot accept we need to send a retry once progress can
// be made
bool can_accept = nbrOutstanding() < wrapper.queueSize();
// keep track of the transaction
if (pkt->isRead()) {
if (can_accept) {
outstandingReads[pkt->getAddr()].push(pkt);
// we count a transaction as outstanding until it has left the
// queue in the controller, and the response has been sent
// back, note that this will differ for reads and writes
++nbrOutstandingReads;
}
} else if (pkt->isWrite()) {
if (can_accept) {
outstandingWrites[pkt->getAddr()].push(pkt);
++nbrOutstandingWrites;
// perform the access for writes
accessAndRespond(pkt);
}
} else {
// keep it simple and just respond if necessary
accessAndRespond(pkt);
return true;
}
if (can_accept) {
// we should never have a situation when we think there is space,
// and there isn't
assert(wrapper.canAccept());
DPRINTF(DRAMSim2, "Enqueueing address %lld\n", pkt->getAddr());
// @todo what about the granularity here, implicit assumption that
// a transaction matches the burst size of the memory (which we
// cannot determine without parsing the ini file ourselves)
wrapper.enqueue(pkt->isWrite(), pkt->getAddr());
return true;
} else {
retryReq = true;
return false;
}
}
void
DRAMSim2::recvRespRetry()
{
DPRINTF(DRAMSim2, "Retrying\n");
assert(retryResp);
retryResp = false;
sendResponse();
}
void
DRAMSim2::accessAndRespond(PacketPtr pkt)
{
DPRINTF(DRAMSim2, "Access for address %lld\n", pkt->getAddr());
bool needsResponse = pkt->needsResponse();
// do the actual memory access which also turns the packet into a
// response
access(pkt);
// turn packet around to go back to requester if response expected
if (needsResponse) {
// access already turned the packet into a response
assert(pkt->isResponse());
// Here we pay for xbar additional delay and to process the payload
// of the packet.
Tick time = curTick() + pkt->headerDelay + pkt->payloadDelay;
// Reset the timings of the packet
pkt->headerDelay = pkt->payloadDelay = 0;
DPRINTF(DRAMSim2, "Queuing response for address %lld\n",
pkt->getAddr());
// queue it to be sent back
responseQueue.push_back(pkt);
// if we are not already waiting for a retry, or are scheduled
// to send a response, schedule an event
if (!retryResp && !sendResponseEvent.scheduled())
schedule(sendResponseEvent, time);
} else {
// queue the packet for deletion
pendingDelete.reset(pkt);
}
}
void DRAMSim2::readComplete(unsigned id, uint64_t addr, uint64_t cycle)
{
assert(cycle == divCeil(curTick() - startTick,
wrapper.clockPeriod() * SimClock::Int::ns));
DPRINTF(DRAMSim2, "Read to address %lld complete\n", addr);
// get the outstanding reads for the address in question
auto p = outstandingReads.find(addr);
assert(p != outstandingReads.end());
// first in first out, which is not necessarily true, but it is
// the best we can do at this point
PacketPtr pkt = p->second.front();
p->second.pop();
if (p->second.empty())
outstandingReads.erase(p);
// no need to check for drain here as the next call will add a
// response to the response queue straight away
assert(nbrOutstandingReads != 0);
--nbrOutstandingReads;
// perform the actual memory access
accessAndRespond(pkt);
}
void DRAMSim2::writeComplete(unsigned id, uint64_t addr, uint64_t cycle)
{
assert(cycle == divCeil(curTick() - startTick,
wrapper.clockPeriod() * SimClock::Int::ns));
DPRINTF(DRAMSim2, "Write to address %lld complete\n", addr);
// get the outstanding reads for the address in question
auto p = outstandingWrites.find(addr);
assert(p != outstandingWrites.end());
// we have already responded, and this is only to keep track of
// what is outstanding
p->second.pop();
if (p->second.empty())
outstandingWrites.erase(p);
assert(nbrOutstandingWrites != 0);
--nbrOutstandingWrites;
if (nbrOutstanding() == 0)
signalDrainDone();
}
BaseSlavePort&
DRAMSim2::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name != "port") {
return MemObject::getSlavePort(if_name, idx);
} else {
return port;
}
}
DrainState
DRAMSim2::drain()
{
// check our outstanding reads and writes and if any they need to
// drain
return nbrOutstanding() != 0 ? DrainState::Draining : DrainState::Drained;
}
DRAMSim2::MemoryPort::MemoryPort(const std::string& _name,
DRAMSim2& _memory)
: SlavePort(_name, &_memory), memory(_memory)
{ }
AddrRangeList
DRAMSim2::MemoryPort::getAddrRanges() const
{
AddrRangeList ranges;
ranges.push_back(memory.getAddrRange());
return ranges;
}
Tick
DRAMSim2::MemoryPort::recvAtomic(PacketPtr pkt)
{
return memory.recvAtomic(pkt);
}
void
DRAMSim2::MemoryPort::recvFunctional(PacketPtr pkt)
{
memory.recvFunctional(pkt);
}
bool
DRAMSim2::MemoryPort::recvTimingReq(PacketPtr pkt)
{
// pass it to the memory controller
return memory.recvTimingReq(pkt);
}
void
DRAMSim2::MemoryPort::recvRespRetry()
{
memory.recvRespRetry();
}
DRAMSim2*
DRAMSim2Params::create()
{
return new DRAMSim2(this);
}