gem5/src/mem/cache/mshr.hh
Andreas Hansson 654266f39c mem: Add cache clusivity
This patch adds a parameter to control the cache clusivity, that is if
the cache is mostly inclusive or exclusive. At the moment there is no
intention to support strict policies, and thus the options are: 1)
mostly inclusive, or 2) mostly exclusive.

The choice of policy guides the behaviuor on a cache fill, and a new
helper function, allocOnFill, is created to encapsulate the decision
making process. For the timing mode, the decision is annotated on the
MSHR on sending out the downstream packet, and in atomic we directly
pass the decision to handleFill. We (ab)use the tempBlock in cases
where we are not allocating on fill, leaving the rest of the cache
unaffected. Simple and effective.

This patch also makes it more explicit that multiple caches are
allowed to consider a block writable (this is the case
also before this patch). That is, for a mostly inclusive cache,
multiple caches upstream may also consider the block exclusive. The
caches considering the block writable/exclusive all appear along the
same path to memory, and from a coherency protocol point of view it
works due to the fact that we always snoop upwards in zero time before
querying any downstream cache.

Note that this patch does not introduce clean writebacks. Thus, for
clean lines we are essentially removing a cache level if it is made
mostly exclusive. For example, lines from the read-only L1 instruction
cache or table-walker cache are always clean, and simply get dropped
rather than being passed to the L2. If the L2 is mostly exclusive and
does not allocate on fill it will thus never hold the line. A follow
on patch adds the clean writebacks.

The patch changes the L2 of the O3_ARM_v7a CPU configuration to be
mostly exclusive (and stats are affected accordingly).
2015-11-06 03:26:41 -05:00

309 lines
9.2 KiB
C++

/*
* Copyright (c) 2012-2013, 2015 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
*/
/**
* @file
* Miss Status and Handling Register (MSHR) declaration.
*/
#ifndef __MEM_CACHE_MSHR_HH__
#define __MEM_CACHE_MSHR_HH__
#include <list>
#include "base/printable.hh"
#include "mem/packet.hh"
class CacheBlk;
class MSHRQueue;
/**
* Miss Status and handling Register. This class keeps all the information
* needed to handle a cache miss including a list of target requests.
* @sa \ref gem5MemorySystem "gem5 Memory System"
*/
class MSHR : public Packet::SenderState, public Printable
{
/**
* Consider the MSHRQueue a friend to avoid making everything public
*/
friend class MSHRQueue;
private:
/** Cycle when ready to issue */
Tick readyTime;
/** True if the request is uncacheable */
bool _isUncacheable;
/** Flag set by downstream caches */
bool downstreamPending;
/** Will we have a dirty copy after this request? */
bool pendingDirty;
/** Did we snoop an invalidate while waiting for data? */
bool postInvalidate;
/** Did we snoop a read while waiting for data? */
bool postDowngrade;
public:
class Target {
public:
enum Source {
FromCPU,
FromSnoop,
FromPrefetcher
};
const Tick recvTime; //!< Time when request was received (for stats)
const Tick readyTime; //!< Time when request is ready to be serviced
const Counter order; //!< Global order (for memory consistency mgmt)
const PacketPtr pkt; //!< Pending request packet.
const Source source; //!< Request from cpu, memory, or prefetcher?
const bool markedPending; //!< Did we mark upstream MSHR
//!< as downstreamPending?
Target(PacketPtr _pkt, Tick _readyTime, Counter _order,
Source _source, bool _markedPending)
: recvTime(curTick()), readyTime(_readyTime), order(_order),
pkt(_pkt), source(_source), markedPending(_markedPending)
{}
};
class TargetList : public std::list<Target> {
public:
bool needsExclusive;
bool hasUpgrade;
TargetList();
void resetFlags() { needsExclusive = hasUpgrade = false; }
bool isReset() const { return !needsExclusive && !hasUpgrade; }
void add(PacketPtr pkt, Tick readyTime, Counter order,
Target::Source source, bool markPending);
void replaceUpgrades();
void clearDownstreamPending();
bool checkFunctional(PacketPtr pkt);
void print(std::ostream &os, int verbosity,
const std::string &prefix) const;
};
/** A list of MSHRs. */
typedef std::list<MSHR *> List;
/** MSHR list iterator. */
typedef List::iterator Iterator;
/** MSHR list const_iterator. */
typedef List::const_iterator ConstIterator;
/** Pointer to queue containing this MSHR. */
MSHRQueue *queue;
/** Order number assigned by the miss queue. */
Counter order;
/** Block aligned address of the MSHR. */
Addr blkAddr;
/** Block size of the cache. */
unsigned blkSize;
/** True if the request targets the secure memory space. */
bool isSecure;
/** True if the request has been sent to the bus. */
bool inService;
/** True if the request is just a simple forward from an upper level */
bool isForward;
/** Keep track of whether we should allocate on fill or not */
bool allocOnFill;
/** The pending* and post* flags are only valid if inService is
* true. Using the accessor functions lets us detect if these
* flags are accessed improperly.
*/
/** True if we need to get an exclusive copy of the block. */
bool needsExclusive() const { return targets.needsExclusive; }
bool isPendingDirty() const {
assert(inService); return pendingDirty;
}
bool hasPostInvalidate() const {
assert(inService); return postInvalidate;
}
bool hasPostDowngrade() const {
assert(inService); return postDowngrade;
}
/** Thread number of the miss. */
ThreadID threadNum;
private:
/** Data buffer (if needed). Currently used only for pending
* upgrade handling. */
uint8_t *data;
/**
* Pointer to this MSHR on the ready list.
* @sa MissQueue, MSHRQueue::readyList
*/
Iterator readyIter;
/**
* Pointer to this MSHR on the allocated list.
* @sa MissQueue, MSHRQueue::allocatedList
*/
Iterator allocIter;
/** List of all requests that match the address */
TargetList targets;
TargetList deferredTargets;
public:
bool isUncacheable() const { return _isUncacheable; }
/**
* Allocate a miss to this MSHR.
* @param blk_addr The address of the block.
* @param blk_size The number of bytes to request.
* @param pkt The original miss.
* @param when_ready When should the MSHR be ready to act upon.
* @param _order The logical order of this MSHR
* @param alloc_on_fill Should the cache allocate a block on fill
*/
void allocate(Addr blk_addr, unsigned blk_size, PacketPtr pkt,
Tick when_ready, Counter _order, bool alloc_on_fill);
bool markInService(bool pending_dirty_resp);
void clearDownstreamPending();
/**
* Mark this MSHR as free.
*/
void deallocate();
/**
* Add a request to the list of targets.
* @param target The target.
*/
void allocateTarget(PacketPtr target, Tick when, Counter order,
bool alloc_on_fill);
bool handleSnoop(PacketPtr target, Counter order);
/** A simple constructor. */
MSHR();
/**
* Returns the current number of allocated targets.
* @return The current number of allocated targets.
*/
int getNumTargets() const
{ return targets.size() + deferredTargets.size(); }
/**
* Returns true if there are targets left.
* @return true if there are targets
*/
bool hasTargets() const { return !targets.empty(); }
/**
* Returns a reference to the first target.
* @return A pointer to the first target.
*/
Target *getTarget()
{
assert(hasTargets());
return &targets.front();
}
/**
* Pop first target.
*/
void popTarget()
{
targets.pop_front();
}
bool isForwardNoResponse() const
{
if (getNumTargets() != 1)
return false;
const Target *tgt = &targets.front();
return tgt->source == Target::FromCPU && !tgt->pkt->needsResponse();
}
bool promoteDeferredTargets();
void promoteExclusive();
bool checkFunctional(PacketPtr pkt);
/**
* Prints the contents of this MSHR for debugging.
*/
void print(std::ostream &os,
int verbosity = 0,
const std::string &prefix = "") const;
/**
* A no-args wrapper of print(std::ostream...) meant to be
* invoked from DPRINTFs avoiding string overheads in fast mode
*
* @return string with mshr fields + [deferred]targets
*/
std::string print() const;
};
#endif // __MEM_CACHE_MSHR_HH__