gem5/arch/mips/isa/decoder.isa
Korey Sewell a7565418d2 Basic MIPS floating point test works now ... I had to realize that when using the double FP reg the
register with the higher # contains the most significant bytes...

arch/mips/isa/decoder.isa:
    divide instruction fixes
arch/mips/isa_traits.cc:
    use double as argument to cvt & round function.
    clean up cout statements in function.
arch/mips/isa_traits.hh:
    In MIPS the higher # reg of a doubles pair is ALSO the most significant reg.
    Once I switched this the basic MIPS FP test I had worked.

--HG--
extra : convert_revision : 45c80df229e6174d0b52fc7cfb530642b1f1fc35
2006-05-07 13:26:15 -04:00

1297 lines
49 KiB
C++

// -*- mode:c++ -*-
////////////////////////////////////////////////////////////////////
//
// The actual MIPS32 ISA decoder
// -----------------------------
// The following instructions are specified in the MIPS32 ISA
// Specification. Decoding closely follows the style specified
// in the MIPS32 ISAthe specification document starting with Table
// A-2 (document available @ www.mips.com)
//
//@todo: Distinguish "unknown/future" use insts from "reserved"
// ones
decode OPCODE_HI default Unknown::unknown() {
// Derived From ... Table A-2 MIPS32 ISA Manual
0x0: decode OPCODE_LO {
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
0x1: decode MOVCI {
format BasicOp {
0: movf({{ if (xc->readMiscReg(FPCR) != CC) Rd = Rs}});
1: movt({{ if (xc->readMiscReg(FPCR) == CC) Rd = Rs}});
}
}
format BasicOp {
//Table A-3 Note: "1. Specific encodings of the rt, rd, and sa fields
//are used to distinguish among the SLL, NOP, SSNOP and EHB functions.
0x0: decode RS {
0x0: decode RT { //fix Nop traditional vs. Nop converted disassembly later
0x0: decode RD default Nop::nop(){
0x0: decode SA {
0x1: ssnop({{ ; }}); //really sll r0,r0,1
0x3: ehb({{ ; }}); //really sll r0,r0,3
}
}
default: sll({{ Rd = Rt.uw << SA; }});
}
}
0x2: decode RS_SRL {
0x0:decode SRL {
0: srl({{ Rd = Rt.uw >> SA; }});
//Hardcoded assuming 32-bit ISA, probably need parameter here
1: rotr({{ Rd = (Rt.uw << (32 - SA)) | (Rt.uw >> SA);}});
}
}
0x3: decode RS {
0x0: sra({{
uint32_t temp = Rt >> SA;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < SA; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
0x4: sllv({{ Rd = Rt.uw << Rs<4:0>; }});
0x6: decode SRLV {
0: srlv({{ Rd = Rt.uw >> Rs<4:0>; }});
//Hardcoded assuming 32-bit ISA, probably need parameter here
1: rotrv({{ Rd = (Rt.uw << (32 - Rs<4:0>)) | (Rt.uw >> Rs<4:0>);}});
}
0x7: srav({{
int shift_amt = Rs<4:0>;
uint32_t temp = Rt >> shift_amt;
if ( (Rt & 0x80000000) > 0 ) {
uint32_t mask = 0x80000000;
for(int i=0; i < shift_amt; i++) {
temp |= mask;
mask = mask >> 1;
}
}
Rd = temp;
}});
}
}
0x1: decode FUNCTION_LO {
//Table A-3 Note: "Specific encodings of the hint field are used
//to distinguish JR from JR.HB and JALR from JALR.HB"
format Jump {
0x0: decode HINT {
0:jr({{ NNPC = Rs & ~1; }},IsReturn);
1:jr_hb({{ NNPC = Rs & ~1; clear_exe_inst_hazards(); }},IsReturn);
}
0x1: decode HINT {
0: jalr({{ Rd = NNPC; NNPC = Rs; }},IsCall,IsReturn);
1: jalr_hb({{ Rd = NNPC; NNPC = Rs; clear_exe_inst_hazards();}},IsCall,IsReturn);
}
}
format BasicOp {
0x2: movz({{ if (Rt == 0) Rd = Rs; }});
0x3: movn({{ if (Rt != 0) Rd = Rs; }});
}
format BasicOp {
0x4: syscall({{ xc->syscall(R2); }},IsNonSpeculative);
0x5: break({{ panic("Not implemented break yet"); }},IsNonSpeculative);
0x7: sync({{ panic("Not implemented sync yet"); }},IsNonSpeculative);
}
}
0x2: decode FUNCTION_LO {
format BasicOp {
0x0: mfhi({{ Rd = xc->readMiscReg(Hi); }});
0x1: mthi({{ xc->setMiscReg(Hi,Rs); }});
0x2: mflo({{ Rd = xc->readMiscReg(Lo); }});
0x3: mtlo({{ xc->setMiscReg(Lo,Rs); }});
}
}
0x3: decode FUNCTION_LO {
format IntOp {
0x0: mult({{
int64_t temp1 = Rs.sd * Rt.sd;
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
0x1: multu({{
uint64_t temp1 = Rs.ud * Rt.ud;
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
0x2: div({{
xc->setMiscReg(Hi,Rs.sd % Rt.sd);
xc->setMiscReg(Lo,Rs.sd / Rt.sd);
}});
0x3: divu({{
xc->setMiscReg(Hi,Rs.ud % Rt.ud);
xc->setMiscReg(Lo,Rs.ud / Rt.ud);
}});
}
}
0x4: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: add({{ Rd.sw = Rs.sw + Rt.sw;/*Trap on Overflow*/}});
0x1: addu({{ Rd.sw = Rs.sw + Rt.sw;}});
0x2: sub({{ Rd.sw = Rs.sw - Rt.sw; /*Trap on Overflow*/}});
0x3: subu({{ Rd.sw = Rs.sw - Rt.sw;}});
0x4: and({{ Rd = Rs & Rt;}});
0x5: or({{ Rd = Rs | Rt;}});
0x6: xor({{ Rd = Rs ^ Rt;}});
0x7: nor({{ Rd = ~(Rs | Rt);}});
}
}
}
0x5: decode HINT {
0x0: decode FUNCTION_LO {
format IntOp{
0x2: slt({{ Rd.sw = ( Rs.sw < Rt.sw ) ? 1 : 0}});
0x3: sltu({{ Rd.uw = ( Rs.uw < Rt.uw ) ? 1 : 0}});
}
}
}
0x6: decode FUNCTION_LO {
format Trap {
0x0: tge({{ cond = (Rs.sw >= Rt.sw); }});
0x1: tgeu({{ cond = (Rs.uw >= Rt.uw); }});
0x2: tlt({{ cond = (Rs.sw < Rt.sw); }});
0x3: tltu({{ cond = (Rs.uw >= Rt.uw); }});
0x4: teq({{ cond = (Rs.sw == Rt.sw); }});
0x6: tne({{ cond = (Rs.sw != Rt.sw); }});
}
}
}
0x1: decode REGIMM_HI {
0x0: decode REGIMM_LO {
format Branch {
0x0: bltz({{ cond = (Rs.sw < 0); }});
0x1: bgez({{ cond = (Rs.sw >= 0); }});
}
format BranchLikely {
//MIPS obsolete instructions
0x2: bltzl({{ cond = (Rs.sw < 0); }});
0x3: bgezl({{ cond = (Rs.sw >= 0); }});
}
}
0x1: decode REGIMM_LO {
format Trap {
0x0: tgei( {{ cond = (Rs.sw >= INTIMM); }});
0x1: tgeiu({{ cond = (Rs.uw >= INTIMM); }});
0x2: tlti( {{ cond = (Rs.sw < INTIMM); }});
0x3: tltiu({{ cond = (Rs.uw < INTIMM); }});
0x4: teqi( {{ cond = (Rs.sw == INTIMM);}});
0x6: tnei( {{ cond = (Rs.sw != INTIMM);}});
}
}
0x2: decode REGIMM_LO {
format Branch {
0x0: bltzal({{ cond = (Rs.sw < 0); }}, IsCall,IsReturn);
0x1: bgezal({{ cond = (Rs.sw >= 0); }}, IsCall,IsReturn);
}
format BranchLikely {
//Will be removed in future MIPS releases
0x2: bltzall({{ cond = (Rs.sw < 0); }}, IsCall, IsReturn);
0x3: bgezall({{ cond = (Rs.sw >= 0); }}, IsCall, IsReturn);
}
}
0x3: decode REGIMM_LO {
format WarnUnimpl {
0x7: synci();
}
}
}
format Jump {
0x2: j({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2);}});
0x3: jal({{ NNPC = (NPC & 0xF0000000) | (JMPTARG << 2); }},IsCall,IsReturn);
}
format Branch {
0x4: beq({{ cond = (Rs.sw == Rt.sw); }});
0x5: bne({{ cond = (Rs.sw != Rt.sw); }});
0x6: decode RT {
0x0: blez({{ cond = (Rs.sw <= 0); }});
}
0x7: decode RT {
0x0: bgtz({{ cond = (Rs.sw > 0); }});
}
}
}
0x1: decode OPCODE_LO {
format IntOp {
0x0: addi({{ Rt.sw = Rs.sw + imm; /*Trap If Overflow*/}});
0x1: addiu({{ Rt.sw = Rs.sw + imm;}});
0x2: slti({{ Rt.sw = ( Rs.sw < imm) ? 1 : 0 }});
0x3: sltiu({{ Rt.uw = ( Rs.uw < (uint32_t)sextImm ) ? 1 : 0 }});
0x4: andi({{ Rt.sw = Rs.sw & zextImm;}});
0x5: ori({{ Rt.sw = Rs.sw | zextImm;}});
0x6: xori({{ Rt.sw = Rs.sw ^ zextImm;}});
0x7: decode RS {
0x0: lui({{ Rt = imm << 16}});
}
}
}
0x2: decode OPCODE_LO {
//Table A-11 MIPS32 COP0 Encoding of rs Field
0x0: decode RS_MSB {
0x0: decode RS {
format System {
0x0: mfc0({{
//uint64_t reg_num = Rd.uw;
Rt = xc->readMiscReg(RD << 5 | SEL);
}});
0x4: mtc0({{
//uint64_t reg_num = Rd.uw;
xc->setMiscReg(RD << 5 | SEL,Rt);
}});
0x8: mftr({{
//The contents of the coprocessor 0 register specified by the
//combination of rd and sel are loaded into general register
//rt. Note that not all coprocessor 0 registers support the
//sel field. In those instances, the sel field must be zero.
//MT Code Needed Here
}});
0xC: mttr({{
//The contents of the coprocessor 0 register specified by the
//combination of rd and sel are loaded into general register
//rt. Note that not all coprocessor 0 registers support the
//sel field. In those instances, the sel field must be zero.
//MT Code Needed Here
}});
0xA: rdpgpr({{
//Accessing Previous Shadow Set Register Number
//uint64_t prev = xc->readMiscReg(SRSCtl)/*[PSS]*/;
//uint64_t reg_num = Rt.uw;
//Rd = xc->regs.IntRegFile[prev];
//Rd = xc->shadowIntRegFile[prev][reg_num];
}});
0xB: decode RD {
0x0: decode SC {
0x0: dvpe({{
Rt.sw = xc->readMiscReg(MVPControl);
xc->setMiscReg(MVPControl,0);
}});
0x1: evpe({{
Rt.sw = xc->readMiscReg(MVPControl);
xc->setMiscReg(MVPControl,1);
}});
}
0x1: decode SC {
0x0: dmt({{
Rt.sw = xc->readMiscReg(VPEControl);
xc->setMiscReg(VPEControl,0);
}});
0x1: emt({{
Rt.sw = xc->readMiscReg(VPEControl);
xc->setMiscReg(VPEControl,1);
}});
}
0xC: decode SC {
0x0: di({{
Rt.sw = xc->readMiscReg(Status);
xc->setMiscReg(Status,0);
}});
0x1: ei({{
Rt.sw = xc->readMiscReg(Status);
xc->setMiscReg(Status,1);
}});
}
}
0xE: wrpgpr({{
//Accessing Previous Shadow Set Register Number
//uint64_t prev = xc->readMiscReg(SRSCtl/*[PSS]*/);
//uint64_t reg_num = Rd.uw;
//xc->regs.IntRegFile[prev];
//xc->shadowIntRegFile[prev][reg_num] = Rt;
}});
}
}
//Table A-12 MIPS32 COP0 Encoding of Function Field When rs=CO
0x1: decode FUNCTION {
format System {
0x01: tlbr({{ }});
0x02: tlbwi({{ }});
0x06: tlbwr({{ }});
0x08: tlbp({{ }});
}
format WarnUnimpl {
0x18: eret();
0x1F: deret();
0x20: wait();
}
}
}
//Table A-13 MIPS32 COP1 Encoding of rs Field
0x1: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format FloatOp {
0x0: mfc1 ({{ Rt.uw = Fs.uw<31:0>; }});
0x3: mfhc1({{ Rt.uw = Fs.ud<63:32>;}});
0x4: mtc1 ({{ Fs.uw = Rt.uw; }});
0x7: mthc1({{
uint64_t fs_hi = Rt.ud << 32;
uint64_t fs_lo = Fs.ud & 0x0000FFFF;
Fs.ud = fs_hi & fs_lo;
}});
}
format System {
0x2: cfc1({{
uint32_t fcsr_reg = xc->readMiscReg(FCSR);
switch (FS)
{
case 0:
Rt = xc->readMiscReg(FIR);
break;
case 25:
Rt = 0 | (fcsr_reg & 0xFE000000) >> 24 | (fcsr_reg & 0x00800000) >> 23;
break;
case 26:
Rt = 0 | (fcsr_reg & 0x0003F07C);
break;
case 28:
Rt = 0 | (fcsr_reg);
break;
case 31:
Rt = fcsr_reg;
break;
default:
panic("FP Control Value (%d) Not Available. Ignoring Access to"
"Floating Control Status Register",fcsr_reg);
}
}});
0x6: ctc1({{
uint32_t fcsr_reg = xc->readMiscReg(FCSR);
uint32_t temp;
switch (FS)
{
case 25:
temp = 0 | (Rt.uw<7:1> << 25) // move 31...25
| (fcsr_reg & 0x01000000) // bit 24
| (fcsr_reg & 0x004FFFFF);// bit 22...0
break;
case 26:
temp = 0 | (fcsr_reg & 0xFFFC0000) // move 31...18
| Rt.uw<17:12> << 12 // bit 17...12
| (fcsr_reg & 0x00000F80) << 7// bit 11...7
| Rt.uw<6:2> << 2 // bit 6...2
| (fcsr_reg & 0x00000002); // bit 1...0
break;
case 28:
temp = 0 | (fcsr_reg & 0xFE000000) // move 31...25
| Rt.uw<2:2> << 24 // bit 24
| (fcsr_reg & 0x00FFF000) << 23// bit 23...12
| Rt.uw<11:7> << 7 // bit 24
| (fcsr_reg & 0x000007E)
| Rt.uw<1:0>;// bit 22...0
break;
case 31:
temp = Rt.uw;
break;
default:
panic("FP Control Value (%d) Not Available. Ignoring Access to"
"Floating Control Status Register",fcsr_reg);
}
xc->setMiscReg(FCSR,temp);
}});
}
}
0x1: decode ND {
0x0: decode TF {
format Branch {
0x0: bc1f({{ cond = (xc->readMiscReg(FPCR) == 0); }});
0x1: bc1t({{ cond = (xc->readMiscReg(FPCR) == 1); }});
}
}
0x1: decode TF {
format BranchLikely {
0x0: bc1fl({{ cond = (xc->readMiscReg(FPCR) == 0); }});
0x1: bc1tl({{ cond = (xc->readMiscReg(FPCR) == 1); }});
}
}
}
}
0x1: decode RS_HI {
0x2: decode RS_LO {
//Table A-14 MIPS32 COP1 Encoding of Function Field When rs=S
//(( single-word ))
0x0: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: adds({{ Fd.sf = Fs.sf + Ft.sf;}});
0x1: subs({{ Fd.sf = Fs.sf - Ft.sf;}});
0x2: muls({{ Fd.sf = Fs.sf * Ft.sf;}});
0x3: divs({{ Fd.sf = Fs.sf / Ft.sf;}});
0x4: sqrts({{ Fd.sf = sqrt(Fs.sf);}});
0x5: abss({{ Fd.sf = fabs(Fs.sf);}});
0x6: movs({{ Fd.sf = Fs.sf;}});
0x7: negs({{ Fd.sf = -1 * Fs.sf;}});
}
}
0x1: decode FUNCTION_LO {
format Float64Op {
0x0: round_l_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_LONG, RND_NEAREST);
}});
0x1: trunc_l_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_LONG, RND_ZERO);
}});
0x2: ceil_l_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_LONG, RND_UP);
}});
0x3: floor_l_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_LONG, RND_DOWN);
}});
}
format FloatOp {
0x4: round_w_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_WORD, RND_NEAREST);
}});
0x5: trunc_w_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_WORD, RND_ZERO);
}});
0x6: ceil_w_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_WORD, RND_UP);
}});
0x7: floor_w_s({{
Fd = convert_and_round(Fs.uw, SINGLE_TO_WORD, RND_DOWN);
}});
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format FloatOp {
0x0: movfs({{if (xc->readMiscReg(FPCR) != CC) Fd = Fs; }});
0x1: movts({{if (xc->readMiscReg(FPCR) == CC) Fd = Fs;}});
}
}
format BasicOp {
0x2: movzs({{ if (Rt == 0) Fd = Fs; }});
0x3: movns({{ if (Rt != 0) Fd = Fs; }});
}
format Float64Op {
0x5: recips({{ Fd = 1 / Fs; }});
0x6: rsqrts({{ Fd = 1 / sqrt((double)Fs.ud);}});
}
}
0x4: decode FUNCTION_LO {
format FloatOp {
0x1: cvt_d_s({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.sf, SINGLE_TO_DOUBLE, rnd_mode);
}});
0x4: cvt_w_s({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.uw, SINGLE_TO_WORD, rnd_mode);
}});
}
//only legal for 64 bit
format Float64Op {
0x5: cvt_l_s({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.uw, SINGLE_TO_LONG, rnd_mode);
}});
0x6: cvt_ps_st({{
Fd.ud = (uint64_t)Fs.uw << 32 | (uint64_t)Ft.uw;
}});
}
}
}
//Table A-15 MIPS32 COP1 Encoding of Function Field When rs=D
0x1: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FloatOp {
0x0: addd({{ Fd.df = Fs.df + Ft.df;}});
0x1: subd({{ Fd.df = Fs.df - Ft.df;}});
0x2: muld({{ Fd.df = Fs.df * Ft.df;}});
0x3: divd({{ Fd.df = Fs.df / Ft.df;}});
0x4: sqrtd({{ Fd.df = sqrt(Fs.df);}});
0x5: absd({{ Fd.df = fabs(Fs.df);}});
0x6: movd({{ Fd.ud = Fs.ud;}});
0x7: negd({{ Fd.df = -1 * Fs.df;}});
}
}
0x1: decode FUNCTION_LO {
format Float64Op {
0x0: round_l_d({{
Fd.ud = convert_and_round(Fs.ud, DOUBLE_TO_LONG, RND_NEAREST);
}});
0x1: trunc_l_d({{
Fd.ud = convert_and_round(Fs.ud, DOUBLE_TO_LONG, RND_ZERO);
}});
0x2: ceil_l_d({{
Fd.ud = convert_and_round(Fs.ud, DOUBLE_TO_LONG, RND_UP);
}});
0x3: floor_l_d({{
Fd.ud = convert_and_round(Fs.ud, DOUBLE_TO_LONG, RND_DOWN);
}});
}
format FloatOp {
0x4: round_w_d({{
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_WORD, RND_NEAREST);
}});
0x5: trunc_w_d({{
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_WORD, RND_ZERO);
}});
0x6: ceil_w_d({{
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_WORD, RND_UP);
}});
0x7: floor_w_d({{
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_WORD, RND_DOWN);
}});
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format FloatOp {
0x0: movfd({{if (xc->readMiscReg(FPCR) != CC) Fd.df = Fs.df; }});
0x1: movtd({{if (xc->readMiscReg(FPCR) == CC) Fd.df = Fs.df; }});
}
}
format BasicOp {
0x2: movzd({{ if (Rt == 0) Fd.df = Fs.df; }});
0x3: movnd({{ if (Rt != 0) Fd.df = Fs.df; }});
}
format Float64Op {
0x5: recipd({{ Fd.df = 1 / Fs.df}});
0x6: rsqrtd({{ Fd.df = 1 / sqrt(Fs.df) }});
}
}
0x4: decode FUNCTION_LO {
format FloatOp {
0x0: cvt_s_d({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_SINGLE, rnd_mode);
}});
0x4: cvt_w_d({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.ud, DOUBLE_TO_WORD, rnd_mode);
}});
}
//only legal for 64 bit
format Float64Op {
0x5: cvt_l_d({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.ud, DOUBLE_TO_LONG, rnd_mode);
}});
}
}
}
//Table A-16 MIPS32 COP1 Encoding of Function Field When rs=W
0x4: decode FUNCTION {
format FloatOp {
0x20: cvt_s_w({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.uw, WORD_TO_SINGLE, rnd_mode);
}});
0x21: cvt_d_w({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.uw, WORD_TO_DOUBLE, rnd_mode);
}});
}
}
//Table A-16 MIPS32 COP1 Encoding of Function Field When rs=L1
//Note: "1. Format type L is legal only if 64-bit floating point operations
//are enabled."
0x5: decode FUNCTION_HI {
format Float64Op {
0x10: cvt_s_l({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.ud, LONG_TO_SINGLE, rnd_mode);
}});
0x11: cvt_d_l({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.ud = convert_and_round(Fs.ud, LONG_TO_DOUBLE, rnd_mode);
}});
}
}
//Table A-17 MIPS64 COP1 Encoding of Function Field When rs=PS1
//Note: "1. Format type PS is legal only if 64-bit floating point operations
//are enabled. "
0x6: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format Float64Op {
0x0: addps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = Fs.df + Ft.df;
}});
0x1: subps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = Fs.df - Ft.df;
}});
0x2: mulps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = Fs.df * Ft.df;
}});
0x5: absps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = fabs(Fs.df);
}});
0x6: movps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
//Fd.df = Fs<31:0> | Ft<31:0>;
}});
0x7: negps({{ //Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = -1 * Fs.df;
}});
}
}
0x2: decode FUNCTION_LO {
0x1: decode MOVCF {
format Float64Op {
0x0: movfps({{if (xc->readMiscReg(FPCR) != CC) Fd = Fs;}});
0x1: movtps({{if (xc->readMiscReg(FPCR) == CC) Fd = Fs;}});
}
}
format BasicOp {
0x2: movzps({{if (xc->readMiscReg(FPCR) != CC) Fd = Fs; }});
0x3: movnps({{if (xc->readMiscReg(FPCR) == CC) Fd = Fs; }});
}
}
0x4: decode FUNCTION_LO {
0x0: Float64Op::cvt_s_pu({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.ud, PUPPER_TO_SINGLE, rnd_mode);
}});
}
0x5: decode FUNCTION_LO {
format Float64Op {
0x0: cvt_s_pl({{
int rnd_mode = xc->readMiscReg(FCSR) & 0x03;
Fd.uw = convert_and_round(Fs.ud, PLOWER_TO_SINGLE,
rnd_mode);
}});
0x4: pll({{ Fd.ud = Fs.ud<31:0> << 32 | Ft.ud<31:0>; }});
0x5: plu({{ Fd.ud = Fs.ud<31:0> << 32 | Ft.ud<63:32>;}});
0x6: pul({{ Fd.ud = Fs.ud<63:32> << 32 | Ft.ud<31:0>; }});
0x7: puu({{ Fd.ud = Fs.ud<63:32> << 32 | Ft.ud<63:32>;}});
}
}
}
}
}
}
//Table A-19 MIPS32 COP2 Encoding of rs Field
0x2: decode RS_MSB {
0x0: decode RS_HI {
0x0: decode RS_LO {
format WarnUnimpl {
0x0: mfc2();
0x2: cfc2();
0x3: mfhc2();
0x4: mtc2();
0x6: ctc2();
0x7: mftc2();
}
}
0x1: decode ND {
0x0: decode TF {
format WarnUnimpl {
0x0: bc2f();
0x1: bc2t();
}
}
0x1: decode TF {
format WarnUnimpl {
0x0: bc2fl();
0x1: bc2tl();
}
}
}
}
}
//Table A-20 MIPS64 COP1X Encoding of Function Field 1
//Note: "COP1X instructions are legal only if 64-bit floating point
//operations are enabled."
0x3: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format LoadFloatMemory {
0x0: lwxc1({{ /*F_t<31:0> = Mem.sf; */}}, {{ EA = Rs + Rt; }});
0x1: ldxc1({{ /*F_t<63:0> = Mem.df;*/ }}, {{ EA = Rs + Rt; }});
0x5: luxc1({{ /*F_t<31:0> = Mem.df; */}},
{{ //Need to make EA<2:0> = 0
EA = Rs + Rt;
}});
}
}
0x1: decode FUNCTION_LO {
format StoreFloatMemory {
0x0: swxc1({{ /*Mem.sf = Ft<31:0>; */}},{{ EA = Rs + Rt; }});
0x1: sdxc1({{ /*Mem.df = Ft<63:0> */}}, {{ EA = Rs + Rt; }});
0x5: suxc1({{ /*Mem.df = F_t<63:0>;*/}},
{{ //Need to make sure EA<2:0> = 0
EA = Rs + Rt;
}});
}
0x7: WarnUnimpl::prefx();
}
format FloatOp {
0x3: WarnUnimpl::alnv_ps();
format BasicOp {
0x4: decode FUNCTION_LO {
0x0: madd_s({{ Fd.sf = (Fs.sf * Fs.sf) + Fr.sf; }});
0x1: madd_d({{ Fd.df = (Fs.df * Fs.df) + Fr.df; }});
0x6: madd_ps({{
//Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = (Fs.df * Fs.df) + Fr.df;
}});
}
0x5: decode FUNCTION_LO {
0x0: msub_s({{ Fd.sf = (Fs.sf * Fs.sf) - Fr.sf; }});
0x1: msub_d({{ Fd.df = (Fs.df * Fs.df) - Fr.df; }});
0x6: msub_ps({{
//Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = (Fs.df * Fs.df) - Fr.df;
}});
}
0x6: decode FUNCTION_LO {
0x0: nmadd_s({{ Fd.sf = (-1 * Fs.sf * Fs.sf) - Fr.sf; }});
0x1: nmadd_d({{ Fd.df = (-1 * Fs.df * Fs.df) + Fr.df; }});
0x6: nmadd_ps({{
//Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = (-1 * Fs.df * Fs.df) + Fr.df;
}});
}
0x7: decode FUNCTION_LO {
0x0: nmsub_s({{ Fd.sf = (-1 * Fs.sf * Fs.sf) - Fr.sf; }});
0x1: nmsub_d({{ Fd.df = (-1 * Fs.df * Fs.df) - Fr.df; }});
0x6: nmsub_ps({{
//Must Check for Exception Here... Supposed to Operate on Upper and
//Lower Halves Independently but we take simulator shortcut
Fd.df = (-1 * Fs.df * Fs.df) + Fr.df;
}});
}
}
}
}
//MIPS obsolete instructions
format BranchLikely {
0x4: beql({{ cond = (Rs.sw == 0); }});
0x5: bnel({{ cond = (Rs.sw != 0); }});
0x6: blezl({{ cond = (Rs.sw <= 0); }});
0x7: bgtzl({{ cond = (Rs.sw > 0); }});
}
}
0x3: decode OPCODE_LO default FailUnimpl::reserved() {
//Table A-5 MIPS32 SPECIAL2 Encoding of Function Field
0x4: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format IntOp {
0x0: madd({{
int64_t temp1 = xc->readMiscReg(Hi) << 32 | xc->readMiscReg(Lo) >> 32;
temp1 = temp1 + (Rs.sw * Rt.sw);
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
0x1: maddu({{
int64_t temp1 = xc->readMiscReg(Hi) << 32 | xc->readMiscReg(Lo) >> 32;
temp1 = temp1 + (Rs.uw * Rt.uw);
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
0x2: mul({{ Rd.sw = Rs.sw * Rt.sw; }});
0x4: msub({{
int64_t temp1 = xc->readMiscReg(Hi) << 32 | xc->readMiscReg(Lo) >> 32;
temp1 = temp1 - (Rs.sw * Rt.sw);
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
0x5: msubu({{
int64_t temp1 = xc->readMiscReg(Hi) << 32 | xc->readMiscReg(Lo) >> 32;
temp1 = temp1 - (Rs.uw * Rt.uw);
xc->setMiscReg(Hi,temp1<63:32>);
xc->setMiscReg(Lo,temp1<31:0>);
}});
}
}
0x4: decode FUNCTION_LO {
format BasicOp {
0x0: clz({{
/*int cnt = 0;
int idx = 0;
while ( Rs.uw<idx> != 1) {
cnt++;
idx--;
}
Rd.uw = cnt;*/
}});
0x1: clo({{
/*int cnt = 0;
int idx = 0;
while ( Rs.uw<idx> != 0) {
cnt++;
idx--;
}
Rd.uw = cnt;*/
}});
}
}
0x7: decode FUNCTION_LO {
0x7: WarnUnimpl::sdbbp();
}
}
//Table A-6 MIPS32 SPECIAL3 Encoding of Function Field for Release 2 of the Architecture
0x7: decode FUNCTION_HI {
0x0: decode FUNCTION_LO {
format FailUnimpl {
0x1: ext();
0x4: ins();
}
}
0x1: decode FUNCTION_LO {
format FailUnimpl {
0x0: fork();
0x1: yield();
}
}
//Table A-10 MIPS32 BSHFL Encoding of sa Field
0x4: decode SA {
0x02: FailUnimpl::wsbh();
format BasicOp {
0x10: seb({{ Rd.sw = Rt<7:0>}});
0x18: seh({{ Rd.sw = Rt<15:0>}});
}
}
0x6: decode FUNCTION_LO {
0x7: FailUnimpl::rdhwr();//{{ /*Rt = xc->hwRegs[RD];*/ }}
}
}
}
0x4: decode OPCODE_LO default FailUnimpl::reserved() {
format LoadMemory {
0x0: lb({{ Rt.sw = Mem.sb; }});
0x1: lh({{ Rt.sw = Mem.sh; }});
0x2: lwl({{
uint32_t mem_word = Mem.uw;
uint32_t unalign_addr = Rs + disp;
uint32_t offset = unalign_addr & 0x00000003;
#if BYTE_ORDER == BIG_ENDIAN
std::cout << "Big Endian Byte Order\n";
switch(offset)
{
case 0:
Rt = mem_word;
break;
case 1:
Rt &= 0x000F;
Rt |= (mem_word << 4);
break;
case 2:
Rt &= 0x00FF;
Rt |= (mem_word << 8);
break;
case 3:
Rt &= 0x0FFF;
Rt |= (mem_word << 12);
break;
default:
panic("lwl: bad offset");
}
#elif BYTE_ORDER == LITTLE_ENDIAN
std::cout << "Little Endian Byte Order\n";
switch(offset)
{
case 0:
Rt &= 0x0FFF;
Rt |= (mem_word << 12);
break;
case 1:
Rt &= 0x00FF;
Rt |= (mem_word << 8);
break;
case 2:
Rt &= 0x000F;
Rt |= (mem_word << 4);
break;
case 3:
Rt = mem_word;
break;
default:
panic("lwl: bad offset");
}
#endif
}}, {{ EA = (Rs + disp) & ~3; }});
0x3: lw({{ Rt.sw = Mem.sw; }});
0x4: lbu({{ Rt.uw = Mem.ub; }});
0x5: lhu({{ Rt.uw = Mem.uh; }});
0x6: lwr({{
uint32_t mem_word = Mem.uw;
uint32_t unalign_addr = Rs + disp;
uint32_t offset = unalign_addr & 0x00000003;
#if BYTE_ORDER == BIG_ENDIAN
switch(offset)
{
case 0: Rt &= 0xFFF0; Rt |= (mem_word >> 12); break;
case 1: Rt &= 0xFF00; Rt |= (mem_word >> 8); break;
case 2: Rt &= 0xF000; Rt |= (mem_word >> 4); break;
case 3: Rt = mem_word; break;
default: panic("lwr: bad offset");
}
#elif BYTE_ORDER == LITTLE_ENDIAN
switch(offset)
{
case 0: Rt = mem_word; break;
case 1: Rt &= 0xF000; Rt |= (mem_word >> 4); break;
case 2: Rt &= 0xFF00; Rt |= (mem_word >> 8); break;
case 3: Rt &= 0xFFF0; Rt |= (mem_word >> 12); break;
default: panic("lwr: bad offset");
}
#endif
}},
{{ EA = (Rs + disp) & ~3; }});
}
0x7: FailUnimpl::reserved();
}
0x5: decode OPCODE_LO default FailUnimpl::reserved() {
format StoreMemory {
0x0: sb({{ Mem.ub = Rt<7:0>; }});
0x1: sh({{ Mem.uh = Rt<15:0>; }});
0x2: swl({{
uint32_t mem_word = 0;
uint32_t aligned_addr = (Rs + disp) & ~3;
uint32_t unalign_addr = Rs + disp;
uint32_t offset = unalign_addr & 0x00000003;
DPRINTF(IEW,"Execute: aligned=0x%x unaligned=0x%x\n offset=0x%x",
aligned_addr,unalign_addr,offset);
fault = xc->read(aligned_addr, (uint32_t&)mem_word, memAccessFlags);
#if BYTE_ORDER == BIG_ENDIAN
switch(offset)
{
case 0:
Mem = Rt;
break;
case 1:
mem_word &= 0xF000;
mem_word |= (Rt >> 4);
Mem = mem_word;
break;
case 2:
mem_word &= 0xFF00;
mem_word |= (Rt >> 8);
Mem = mem_word;
break;
case 3:
mem_word &= 0xFFF0;
mem_word |= (Rt >> 12);
Mem = mem_word;
break;
default:
panic("swl: bad offset");
}
#elif BYTE_ORDER == LITTLE_ENDIAN
switch(offset)
{
case 0:
mem_word &= 0xFFF0;
mem_word |= (Rt >> 12);
Mem = mem_word;
break;
case 1:
mem_word &= 0xFF00;
mem_word |= (Rt >> 8);
Mem = mem_word;
break;
case 2:
mem_word &= 0xF000;
mem_word |= (Rt >> 4);
Mem = mem_word;
break;
case 3:
Mem = Rt;
break;
default:
panic("swl: bad offset");
}
#endif
}},{{ EA = (Rs + disp) & ~3; }},mem_flags = NO_ALIGN_FAULT);
0x3: sw({{ Mem.uw = Rt<31:0>; }});
0x6: swr({{
uint32_t mem_word = 0;
uint32_t aligned_addr = (Rs + disp) & ~3;
uint32_t unalign_addr = Rs + disp;
uint32_t offset = unalign_addr & 0x00000003;
fault = xc->read(aligned_addr, (uint32_t&)mem_word, memAccessFlags);
#if BYTE_ORDER == BIG_ENDIAN
switch(offset)
{
case 0:
mem_word &= 0x0FFF;
mem_word |= (Rt << 12);
Mem = mem_word;
break;
case 1:
mem_word &= 0x00FF;
mem_word |= (Rt << 8);
Mem = mem_word;
break;
case 2:
mem_word &= 0x000F;
mem_word |= (Rt << 4);
Mem = mem_word;
break;
case 3:
Mem = Rt;
break;
default:
panic("swr: bad offset");
}
#elif BYTE_ORDER == LITTLE_ENDIAN
switch(offset)
{
case 0:
Mem = Rt;
break;
case 1:
mem_word &= 0x000F;
mem_word |= (Rt << 4);
Mem = mem_word;
break;
case 2:
mem_word &= 0x00FF;
mem_word |= (Rt << 8);
Mem = mem_word;
break;
case 3:
mem_word &= 0x0FFF;
mem_word |= (Rt << 12);
Mem = mem_word;
break;
default:
panic("swr: bad offset");
}
#endif
}},{{ EA = (Rs + disp) & ~3;}},mem_flags = NO_ALIGN_FAULT);
}
format WarnUnimpl {
0x7: cache();
}
}
0x6: decode OPCODE_LO default FailUnimpl::reserved() {
0x0: FailUnimpl::ll();
format LoadFloatMemory {
0x1: lwc1({{ Ft.uw = Mem.uw; }});
0x5: ldc1({{ Ft.ud = Mem.ud; }});
}
}
0x7: decode OPCODE_LO default FailUnimpl::reserved() {
0x0: FailUnimpl::sc();
format StoreFloatMemory {
0x1: swc1({{ Mem.uw = Ft.uw; }});
0x5: sdc1({{ Mem.ud = Ft.ud; }});
}
}
}