gem5/src/mem/protocol/MOESI_SMP_directory-cache.sm
Nathan Binkert 2f30950143 ruby: Import ruby and slicc from GEMS
We eventually plan to replace the m5 cache hierarchy with the GEMS
hierarchy, but for now we will make both live alongside eachother.
2009-05-11 10:38:43 -07:00

982 lines
31 KiB
Plaintext

/*
* Copyright (c) 1999-2005 Mark D. Hill and David A. Wood
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* $Id$
*
*/
machine(L1Cache, "Directory protocol") {
MessageBuffer requestFromCache, network="To", virtual_network="0", ordered="false";
MessageBuffer responseFromCache, network="To", virtual_network="2", ordered="false";
MessageBuffer unblockFromCache, network="To", virtual_network="3", ordered="false";
MessageBuffer forwardToCache, network="From", virtual_network="1", ordered="false";
MessageBuffer responseToCache, network="From", virtual_network="2", ordered="false";
// STATES
enumeration(State, desc="Cache states", default="L1Cache_State_I") {
// Base states
NP, desc="Not Present";
I, desc="Idle";
S, desc="Shared";
O, desc="Owned";
E, desc="Exclusive (clean)";
M, desc="Modified (dirty)";
MM, desc="Modified (dirty and locally modified)";
// Transient States
IM, "IM", desc="Issued GetX";
SM, "SM", desc="Issued GetX, we still have an old copy of the line";
OM, "OM", desc="Issued GetX, received data";
IS, "IS", desc="Issued GetS";
OI, "OI", desc="Issued PutO, waiting for ack";
MI, "MI", desc="Issued PutX, waiting for ack";
II, "II", desc="Issued PutX/O, saw Fwd_GETS or Fwd_GETX, waiting for ack";
}
// EVENTS
enumeration(Event, desc="Cache events") {
Load, desc="Load request from the processor";
Ifetch, desc="I-fetch request from the processor";
Store, desc="Store request from the processor";
L2_Replacement, desc="Replacement";
L1_to_L2, desc="L1 to L2 transfer";
L2_to_L1D, desc="L2 to L1-Data transfer";
L2_to_L1I, desc="L2 to L1-Instruction transfer";
// Requests
Own_GETX, desc="We observe our own GetX forwarded back to us";
Fwd_GETX, desc="A GetX from another processor";
Fwd_GETS, desc="A GetS from another processor";
Inv, desc="Invalidations from the directory";
// Responses
Ack, desc="Received an ack message";
Data, desc="Received a data message, responder has a shared copy";
Exclusive_Data_Clean, desc="Received a data message, no other processor has it, data is clean";
Exclusive_Data_Dirty, desc="Received a data message, no other processor has it, data is dirty";
Writeback_Ack, desc="Writeback O.K. from directory";
Writeback_Nack, desc="Writeback not O.K. from directory";
// Triggers
All_acks, desc="Received all required data and message acks";
}
// TYPES
// CacheEntry
structure(Entry, desc="...", interface="AbstractCacheEntry") {
State CacheState, desc="cache state";
bool Dirty, desc="Is the data dirty (different than memory)?";
DataBlock DataBlk, desc="data for the block";
}
// TBE fields
structure(TBE, desc="...") {
State TBEState, desc="Transient state";
DataBlock DataBlk, desc="data for the block, required for concurrent writebacks";
bool Dirty, desc="Is the data dirty (different than memory)?";
int NumPendingMsgs, default="0", desc="Number of acks/data messages that this processor is waiting for";
}
external_type(CacheMemory) {
bool cacheAvail(Address);
Address cacheProbe(Address);
void allocate(Address);
void deallocate(Address);
Entry lookup(Address);
void changePermission(Address, AccessPermission);
bool isTagPresent(Address);
}
external_type(TBETable) {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
MessageBuffer mandatoryQueue, abstract_chip_ptr="true", ordered="false";
Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i";
StoreBuffer storeBuffer, abstract_chip_ptr="true", constructor_hack="i";
TBETable TBEs, template_hack="<L1Cache_TBE>";
CacheMemory L1IcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true";
CacheMemory L1DcacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true";
CacheMemory L2cacheMemory, template_hack="<L1Cache_Entry>", constructor_hack='L2_CACHE_NUM_SETS_BITS,L2_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L2"', abstract_chip_ptr="true";
Entry getCacheEntry(Address addr), return_by_ref="yes" {
if (L2cacheMemory.isTagPresent(addr)) {
return L2cacheMemory[addr];
} else if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory[addr];
} else {
return L1IcacheMemory[addr];
}
}
void changePermission(Address addr, AccessPermission permission) {
if (L2cacheMemory.isTagPresent(addr)) {
return L2cacheMemory.changePermission(addr, permission);
} else if (L1DcacheMemory.isTagPresent(addr)) {
return L1DcacheMemory.changePermission(addr, permission);
} else {
return L1IcacheMemory.changePermission(addr, permission);
}
}
bool isCacheTagPresent(Address addr) {
return (L2cacheMemory.isTagPresent(addr) || L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr));
}
State getState(Address addr) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
if(TBEs.isPresent(addr)) {
return TBEs[addr].TBEState;
} else if (isCacheTagPresent(addr)) {
return getCacheEntry(addr).CacheState;
}
return State:NP;
}
void setState(Address addr, State state) {
assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false);
assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false);
if (TBEs.isPresent(addr)) {
TBEs[addr].TBEState := state;
}
if (isCacheTagPresent(addr)) {
getCacheEntry(addr).CacheState := state;
if (state == State:E) {
assert(getCacheEntry(addr).Dirty == false);
}
if ((state == State:M) || (state == State:MM)) {
assert(getCacheEntry(addr).Dirty == true);
}
// Set permission
if (state == State:MM) {
changePermission(addr, AccessPermission:Read_Write);
} else if ((state == State:S) ||
(state == State:O) ||
(state == State:M) ||
(state == State:E) ||
(state == State:SM) ||
(state == State:OM)) {
changePermission(addr, AccessPermission:Read_Only);
} else {
changePermission(addr, AccessPermission:Invalid);
}
}
}
Event mandatory_request_type_to_event(CacheRequestType type) {
if (type == CacheRequestType:LD) {
return Event:Load;
} else if (type == CacheRequestType:IFETCH) {
return Event:Ifetch;
} else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) {
return Event:Store;
} else {
error("Invalid CacheRequestType");
}
}
MessageBuffer triggerQueue, ordered="true";
// ** OUT_PORTS **
out_port(requestNetwork_out, RequestMsg, requestFromCache);
out_port(responseNetwork_out, ResponseMsg, responseFromCache);
out_port(unblockNetwork_out, ResponseMsg, unblockFromCache);
out_port(triggerQueue_out, TriggerMsg, triggerQueue);
// ** IN_PORTS **
// Trigger Queue
in_port(triggerQueue_in, TriggerMsg, triggerQueue) {
if (triggerQueue_in.isReady()) {
peek(triggerQueue_in, TriggerMsg) {
if (in_msg.Type == TriggerType:ALL_ACKS) {
trigger(Event:All_acks, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the request network
// Forward Network
in_port(forwardToCache_in, RequestMsg, forwardToCache) {
if (forwardToCache_in.isReady()) {
peek(forwardToCache_in, RequestMsg) {
if (in_msg.Type == CoherenceRequestType:GETX) {
if (in_msg.Requestor == machineID) {
trigger(Event:Own_GETX, in_msg.Address);
} else {
trigger(Event:Fwd_GETX, in_msg.Address);
}
} else if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:Fwd_GETS, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:INV) {
trigger(Event:Inv, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:WB_ACK) {
trigger(Event:Writeback_Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceRequestType:WB_NACK) {
trigger(Event:Writeback_Nack, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Response Network
in_port(responseToCache_in, ResponseMsg, responseToCache) {
if (responseToCache_in.isReady()) {
peek(responseToCache_in, ResponseMsg) {
if (in_msg.Type == CoherenceResponseType:ACK) {
trigger(Event:Ack, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA) {
trigger(Event:Data, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE_CLEAN) {
trigger(Event:Exclusive_Data_Clean, in_msg.Address);
} else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE_DIRTY) {
trigger(Event:Exclusive_Data_Dirty, in_msg.Address);
} else {
error("Unexpected message");
}
}
}
}
// Nothing from the unblock network
// Mandatory Queue
in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") {
if (mandatoryQueue_in.isReady()) {
peek(mandatoryQueue_in, CacheMsg) {
// Check for data access to blocks in I-cache and ifetchs to blocks in D-cache
if (in_msg.Type == CacheRequestType:IFETCH) {
// ** INSTRUCTION ACCESS ***
// Check to see if it is in the OTHER L1
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cacheMemory.cacheAvail(in_msg.Address)) {
trigger(Event:L1_to_L2, in_msg.Address);
} else {
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address));
}
}
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1IcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1
if (L2cacheMemory.isTagPresent(in_msg.Address)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:L2_to_L1I, in_msg.Address);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
}
} else {
// No room in the L1, so we need to make room
if (L2cacheMemory.cacheAvail(L1IcacheMemory.cacheProbe(in_msg.Address))) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2, L1IcacheMemory.cacheProbe(in_msg.Address));
} else {
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1IcacheMemory.cacheProbe(in_msg.Address)));
}
}
}
} else {
// *** DATA ACCESS ***
// Check to see if it is in the OTHER L1
if (L1IcacheMemory.isTagPresent(in_msg.Address)) {
// The block is in the wrong L1, try to write it to the L2
if (L2cacheMemory.cacheAvail(in_msg.Address)) {
trigger(Event:L1_to_L2, in_msg.Address);
} else {
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address));
}
}
if (L1DcacheMemory.isTagPresent(in_msg.Address)) {
// The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
} else {
if (L1DcacheMemory.cacheAvail(in_msg.Address)) {
// L1 does't have the line, but we have space for it in the L1
if (L2cacheMemory.isTagPresent(in_msg.Address)) {
// L2 has it (maybe not with the right permissions)
trigger(Event:L2_to_L1D, in_msg.Address);
} else {
// We have room, the L2 doesn't have it, so the L1 fetches the line
trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address);
}
} else {
// No room in the L1, so we need to make room
if (L2cacheMemory.cacheAvail(L1DcacheMemory.cacheProbe(in_msg.Address))) {
// The L2 has room, so we move the line from the L1 to the L2
trigger(Event:L1_to_L2, L1DcacheMemory.cacheProbe(in_msg.Address));
} else {
// The L2 does not have room, so we replace a line from the L2
trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1DcacheMemory.cacheProbe(in_msg.Address)));
}
}
}
}
}
}
}
// ACTIONS
action(a_issueGETS, "a", desc="Issue GETS") {
enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETS;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Request_Control;
// TBEs[address].NumPendingMsgs := numberOfNodes(); // One from each other processor (n-1) plus the memory (+1)
}
}
action(b_issueGETX, "b", desc="Issue GETX") {
enqueue(requestNetwork_out, RequestMsg, latency="(ISSUE_LATENCY-1)") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:GETX;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Request_Control;
// TBEs[address].NumPendingMsgs := numberOfNodes(); // One from each other processor (n-1) plus the memory (+1)
}
}
action(d_issuePUTX, "d", desc="Issue PUTX") {
enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTX;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(dd_issuePUTO, "\d", desc="Issue PUTO") {
enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:PUTO;
out_msg.Requestor := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(e_sendData, "e", desc="Send data from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := getCacheEntry(address).DataBlk;
out_msg.Dirty := getCacheEntry(address).Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(ee_sendDataExclusive, "\e", desc="Send data from cache to requestor, don't keep a shared copy") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE_DIRTY;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := getCacheEntry(address).DataBlk;
out_msg.Dirty := getCacheEntry(address).Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(f_sendAck, "f", desc="Send ack from cache to requestor") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:ACK;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.Acks := 0 - 1; // -1
out_msg.MessageSize := MessageSizeType:Response_Control;
}
}
}
action(g_sendUnblock, "g", desc="Send unblock to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency="NULL_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCK;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(gg_sendUnblockExclusive, "\g", desc="Send unblock exclusive to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency="NULL_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:UNBLOCK_EXCLUSIVE;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.MessageSize := MessageSizeType:Unblock_Control;
}
}
action(h_load_hit, "h", desc="Notify sequencer the load completed.") {
DEBUG_EXPR(getCacheEntry(address).DataBlk);
sequencer.readCallback(address, getCacheEntry(address).DataBlk);
}
action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") {
DEBUG_EXPR(getCacheEntry(address).DataBlk);
sequencer.writeCallback(address, getCacheEntry(address).DataBlk);
getCacheEntry(address).Dirty := true;
}
action(i_allocateTBE, "i", desc="Allocate TBE") {
check_allocate(TBEs);
TBEs.allocate(address);
TBEs[address].DataBlk := getCacheEntry(address).DataBlk; // Data only used for writebacks
TBEs[address].Dirty := getCacheEntry(address).Dirty;
}
action(j_popTriggerQueue, "j", desc="Pop trigger queue.") {
triggerQueue_in.dequeue();
}
action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") {
mandatoryQueue_in.dequeue();
}
action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") {
forwardToCache_in.dequeue();
}
action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") {
peek(responseToCache_in, ResponseMsg) {
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - in_msg.Acks;
}
}
action(mm_decrementNumberOfMessages, "\m", desc="Decrement the number of messages for which we're waiting") {
peek(forwardToCache_in, RequestMsg) {
TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - in_msg.Acks;
}
}
action(n_popResponseQueue, "n", desc="Pop response queue") {
responseToCache_in.dequeue();
}
action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") {
if (TBEs[address].NumPendingMsgs == 0) {
enqueue(triggerQueue_out, TriggerMsg) {
out_msg.Address := address;
out_msg.Type := TriggerType:ALL_ACKS;
}
}
}
action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") {
peek(forwardToCache_in, RequestMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.Requestor);
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.Dirty := TBEs[address].Dirty;
out_msg.Acks := in_msg.Acks;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(qq_sendDataFromTBEToMemory, "\q", desc="Send data from TBE to memory") {
enqueue(unblockNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") {
out_msg.Address := address;
out_msg.Sender := machineID;
out_msg.Destination.add(map_Address_to_Directory(address));
out_msg.Dirty := TBEs[address].Dirty;
if (TBEs[address].Dirty) {
out_msg.Type := CoherenceResponseType:WRITEBACK_DIRTY;
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Data;
} else {
out_msg.Type := CoherenceResponseType:WRITEBACK_CLEAN;
// NOTE: in a real system this would not send data. We send
// data here only so we can check it at the memory
out_msg.DataBlk := TBEs[address].DataBlk;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(s_deallocateTBE, "s", desc="Deallocate TBE") {
TBEs.deallocate(address);
}
action(u_writeDataToCache, "u", desc="Write data to cache") {
peek(responseToCache_in, ResponseMsg) {
getCacheEntry(address).DataBlk := in_msg.DataBlk;
getCacheEntry(address).Dirty := in_msg.Dirty;
}
}
action(v_writeDataToCacheVerify, "v", desc="Write data to cache, assert it was same as before") {
peek(responseToCache_in, ResponseMsg) {
assert(getCacheEntry(address).DataBlk == in_msg.DataBlk);
getCacheEntry(address).DataBlk := in_msg.DataBlk;
getCacheEntry(address).Dirty := in_msg.Dirty;
}
}
action(kk_deallocateL1CacheBlock, "\k", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") {
if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory.deallocate(address);
} else {
L1IcacheMemory.deallocate(address);
}
}
action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") {
if (L1DcacheMemory.isTagPresent(address) == false) {
L1DcacheMemory.allocate(address);
}
}
action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") {
if (L1IcacheMemory.isTagPresent(address) == false) {
L1IcacheMemory.allocate(address);
}
}
action(vv_allocateL2CacheBlock, "\v", desc="Set L2 cache tag equal to tag of block B.") {
L2cacheMemory.allocate(address);
}
action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") {
L2cacheMemory.deallocate(address);
}
action(ss_copyFromL1toL2, "\s", desc="Copy data block from L1 (I or D) to L2") {
if (L1DcacheMemory.isTagPresent(address)) {
L2cacheMemory[address] := L1DcacheMemory[address];
} else {
L2cacheMemory[address] := L1IcacheMemory[address];
}
}
action(tt_copyFromL2toL1, "\t", desc="Copy data block from L2 to L1 (I or D)") {
if (L1DcacheMemory.isTagPresent(address)) {
L1DcacheMemory[address] := L2cacheMemory[address];
} else {
L1IcacheMemory[address] := L2cacheMemory[address];
}
}
action(uu_profileMiss, "\u", desc="Profile the demand miss") {
peek(mandatoryQueue_in, CacheMsg) {
profile_miss(in_msg, id);
}
}
action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") {
mandatoryQueue_in.recycle();
}
//*****************************************************
// TRANSITIONS
//*****************************************************
// Transitions for Load/Store/L2_Replacement from transient states
transition({IM, SM, OM, IS, OI, MI, II}, {Store, L2_Replacement}) {
zz_recycleMandatoryQueue;
}
transition({IM, IS, OI, MI, II}, {Load, Ifetch}) {
zz_recycleMandatoryQueue;
}
transition({IM, SM, OM, IS, OI, MI, II}, L1_to_L2) {
zz_recycleMandatoryQueue;
}
// Transitions moving data between the L1 and L2 caches
transition({I, S, O, E, M, MM}, L1_to_L2) {
vv_allocateL2CacheBlock;
ss_copyFromL1toL2; // Not really needed for state I
kk_deallocateL1CacheBlock;
}
transition({I, S, O, E, M, MM}, L2_to_L1D) {
ii_allocateL1DCacheBlock;
tt_copyFromL2toL1; // Not really needed for state I
rr_deallocateL2CacheBlock;
}
transition({I, S, O, E, M, MM}, L2_to_L1I) {
jj_allocateL1ICacheBlock;
tt_copyFromL2toL1; // Not really needed for state I
rr_deallocateL2CacheBlock;
}
// Transitions from Idle
transition({NP, I}, Load, IS) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileMiss;
k_popMandatoryQueue;
}
transition({NP, I}, Ifetch, IS) {
jj_allocateL1ICacheBlock;
i_allocateTBE;
a_issueGETS;
uu_profileMiss;
k_popMandatoryQueue;
}
transition({NP, I}, Store, IM) {
ii_allocateL1DCacheBlock;
i_allocateTBE;
b_issueGETX;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(I, L2_Replacement) {
rr_deallocateL2CacheBlock;
}
transition({NP, I}, Inv) {
f_sendAck;
l_popForwardQueue;
}
// Transitions from Shared
transition({S, SM}, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(S, Store, SM) {
i_allocateTBE;
b_issueGETX;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(S, L2_Replacement, I) {
rr_deallocateL2CacheBlock;
}
transition(S, Inv, I) {
f_sendAck;
l_popForwardQueue;
}
// Transitions from Owned
transition({O, OM}, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(O, Store, OM) {
i_allocateTBE;
b_issueGETX;
// p_decrementNumberOfMessagesByOne;
uu_profileMiss;
k_popMandatoryQueue;
}
transition(O, L2_Replacement, OI) {
i_allocateTBE;
dd_issuePUTO;
rr_deallocateL2CacheBlock;
}
transition(O, Fwd_GETX, I) {
e_sendData;
l_popForwardQueue;
}
transition(O, Fwd_GETS) {
e_sendData;
l_popForwardQueue;
}
// Transitions from MM
transition(MM, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition(MM, Store) {
hh_store_hit;
k_popMandatoryQueue;
}
transition(MM, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUTX;
rr_deallocateL2CacheBlock;
}
transition(MM, Fwd_GETX, I) {
e_sendData;
l_popForwardQueue;
}
transition(MM, Fwd_GETS, I) {
ee_sendDataExclusive;
l_popForwardQueue;
}
// Transitions from M
transition({E, M}, {Load, Ifetch}) {
h_load_hit;
k_popMandatoryQueue;
}
transition({E, M}, Store, MM) {
hh_store_hit;
k_popMandatoryQueue;
}
transition({E, M}, L2_Replacement, MI) {
i_allocateTBE;
d_issuePUTX;
rr_deallocateL2CacheBlock;
}
transition({E, M}, Fwd_GETX, I) {
e_sendData;
l_popForwardQueue;
}
transition({E, M}, Fwd_GETS, O) {
e_sendData;
l_popForwardQueue;
}
// Transitions from IM
transition(IM, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition(IM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(IM, Data, OM) {
u_writeDataToCache;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from SM
transition(SM, Inv, IM) {
f_sendAck;
l_popForwardQueue;
}
transition(SM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(SM, Data, OM) {
v_writeDataToCacheVerify;
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
// Transitions from OM
transition(OM, Own_GETX) {
mm_decrementNumberOfMessages;
o_checkForCompletion;
l_popForwardQueue;
}
transition(OM, Fwd_GETX, IM) {
e_sendData;
l_popForwardQueue;
}
transition(OM, Fwd_GETS, OM) {
e_sendData;
l_popForwardQueue;
}
transition(OM, Ack) {
m_decrementNumberOfMessages;
o_checkForCompletion;
n_popResponseQueue;
}
transition(OM, All_acks, MM) {
hh_store_hit;
gg_sendUnblockExclusive;
s_deallocateTBE;
j_popTriggerQueue;
}
// Transitions from IS
transition(IS, Inv) {
f_sendAck;
l_popForwardQueue;
}
transition(IS, Data, S) {
u_writeDataToCache;
m_decrementNumberOfMessages;
h_load_hit;
g_sendUnblock;
s_deallocateTBE;
n_popResponseQueue;
}
transition(IS, Exclusive_Data_Clean, E) {
u_writeDataToCache;
m_decrementNumberOfMessages;
h_load_hit;
gg_sendUnblockExclusive;
s_deallocateTBE;
n_popResponseQueue;
}
transition(IS, Exclusive_Data_Dirty, M) {
u_writeDataToCache;
m_decrementNumberOfMessages;
h_load_hit;
gg_sendUnblockExclusive;
s_deallocateTBE;
n_popResponseQueue;
}
// Transitions from OI/MI
transition(MI, Fwd_GETS) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(MI, Fwd_GETX, II) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(OI, Fwd_GETS) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition(OI, Fwd_GETX, II) {
q_sendDataFromTBEToCache;
l_popForwardQueue;
}
transition({OI, MI}, Writeback_Ack, I) {
qq_sendDataFromTBEToMemory;
s_deallocateTBE;
l_popForwardQueue;
}
transition(MI, Writeback_Nack, OI) {
// FIXME: This might cause deadlock by re-using the writeback
// channel, we should handle this case differently.
dd_issuePUTO;
l_popForwardQueue;
}
// Transitions from II
transition(II, Writeback_Ack, I) {
g_sendUnblock;
s_deallocateTBE;
l_popForwardQueue;
}
transition(II, Writeback_Nack, I) {
s_deallocateTBE;
l_popForwardQueue;
}
transition(II, Inv) {
f_sendAck;
l_popForwardQueue;
}
}