/* * Copyright (c) 1999-2005 Mark D. Hill and David A. Wood * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * $Id$ * */ machine(L1Cache, "Directory protocol") { MessageBuffer requestFromCache, network="To", virtual_network="0", ordered="false"; MessageBuffer responseFromCache, network="To", virtual_network="2", ordered="false"; MessageBuffer unblockFromCache, network="To", virtual_network="3", ordered="false"; MessageBuffer forwardToCache, network="From", virtual_network="1", ordered="false"; MessageBuffer responseToCache, network="From", virtual_network="2", ordered="false"; // STATES enumeration(State, desc="Cache states", default="L1Cache_State_I") { // Base states NP, desc="Not Present"; I, desc="Idle"; S, desc="Shared"; O, desc="Owned"; E, desc="Exclusive (clean)"; M, desc="Modified (dirty)"; MM, desc="Modified (dirty and locally modified)"; // Transient States IM, "IM", desc="Issued GetX"; SM, "SM", desc="Issued GetX, we still have an old copy of the line"; OM, "OM", desc="Issued GetX, received data"; IS, "IS", desc="Issued GetS"; OI, "OI", desc="Issued PutO, waiting for ack"; MI, "MI", desc="Issued PutX, waiting for ack"; II, "II", desc="Issued PutX/O, saw Fwd_GETS or Fwd_GETX, waiting for ack"; } // EVENTS enumeration(Event, desc="Cache events") { Load, desc="Load request from the processor"; Ifetch, desc="I-fetch request from the processor"; Store, desc="Store request from the processor"; L2_Replacement, desc="Replacement"; L1_to_L2, desc="L1 to L2 transfer"; L2_to_L1D, desc="L2 to L1-Data transfer"; L2_to_L1I, desc="L2 to L1-Instruction transfer"; // Requests Own_GETX, desc="We observe our own GetX forwarded back to us"; Fwd_GETX, desc="A GetX from another processor"; Fwd_GETS, desc="A GetS from another processor"; Inv, desc="Invalidations from the directory"; // Responses Ack, desc="Received an ack message"; Data, desc="Received a data message, responder has a shared copy"; Exclusive_Data_Clean, desc="Received a data message, no other processor has it, data is clean"; Exclusive_Data_Dirty, desc="Received a data message, no other processor has it, data is dirty"; Writeback_Ack, desc="Writeback O.K. from directory"; Writeback_Nack, desc="Writeback not O.K. from directory"; // Triggers All_acks, desc="Received all required data and message acks"; } // TYPES // CacheEntry structure(Entry, desc="...", interface="AbstractCacheEntry") { State CacheState, desc="cache state"; bool Dirty, desc="Is the data dirty (different than memory)?"; DataBlock DataBlk, desc="data for the block"; } // TBE fields structure(TBE, desc="...") { State TBEState, desc="Transient state"; DataBlock DataBlk, desc="data for the block, required for concurrent writebacks"; bool Dirty, desc="Is the data dirty (different than memory)?"; int NumPendingMsgs, default="0", desc="Number of acks/data messages that this processor is waiting for"; } external_type(CacheMemory) { bool cacheAvail(Address); Address cacheProbe(Address); void allocate(Address); void deallocate(Address); Entry lookup(Address); void changePermission(Address, AccessPermission); bool isTagPresent(Address); } external_type(TBETable) { TBE lookup(Address); void allocate(Address); void deallocate(Address); bool isPresent(Address); } MessageBuffer mandatoryQueue, abstract_chip_ptr="true", ordered="false"; Sequencer sequencer, abstract_chip_ptr="true", constructor_hack="i"; StoreBuffer storeBuffer, abstract_chip_ptr="true", constructor_hack="i"; TBETable TBEs, template_hack=""; CacheMemory L1IcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1I"', abstract_chip_ptr="true"; CacheMemory L1DcacheMemory, template_hack="", constructor_hack='L1_CACHE_NUM_SETS_BITS,L1_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L1D"', abstract_chip_ptr="true"; CacheMemory L2cacheMemory, template_hack="", constructor_hack='L2_CACHE_NUM_SETS_BITS,L2_CACHE_ASSOC,MachineType_L1Cache,int_to_string(i)+"_L2"', abstract_chip_ptr="true"; Entry getCacheEntry(Address addr), return_by_ref="yes" { if (L2cacheMemory.isTagPresent(addr)) { return L2cacheMemory[addr]; } else if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory[addr]; } else { return L1IcacheMemory[addr]; } } void changePermission(Address addr, AccessPermission permission) { if (L2cacheMemory.isTagPresent(addr)) { return L2cacheMemory.changePermission(addr, permission); } else if (L1DcacheMemory.isTagPresent(addr)) { return L1DcacheMemory.changePermission(addr, permission); } else { return L1IcacheMemory.changePermission(addr, permission); } } bool isCacheTagPresent(Address addr) { return (L2cacheMemory.isTagPresent(addr) || L1DcacheMemory.isTagPresent(addr) || L1IcacheMemory.isTagPresent(addr)); } State getState(Address addr) { assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); if(TBEs.isPresent(addr)) { return TBEs[addr].TBEState; } else if (isCacheTagPresent(addr)) { return getCacheEntry(addr).CacheState; } return State:NP; } void setState(Address addr, State state) { assert((L1DcacheMemory.isTagPresent(addr) && L1IcacheMemory.isTagPresent(addr)) == false); assert((L1IcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); assert((L1DcacheMemory.isTagPresent(addr) && L2cacheMemory.isTagPresent(addr)) == false); if (TBEs.isPresent(addr)) { TBEs[addr].TBEState := state; } if (isCacheTagPresent(addr)) { getCacheEntry(addr).CacheState := state; if (state == State:E) { assert(getCacheEntry(addr).Dirty == false); } if ((state == State:M) || (state == State:MM)) { assert(getCacheEntry(addr).Dirty == true); } // Set permission if (state == State:MM) { changePermission(addr, AccessPermission:Read_Write); } else if ((state == State:S) || (state == State:O) || (state == State:M) || (state == State:E) || (state == State:SM) || (state == State:OM)) { changePermission(addr, AccessPermission:Read_Only); } else { changePermission(addr, AccessPermission:Invalid); } } } Event mandatory_request_type_to_event(CacheRequestType type) { if (type == CacheRequestType:LD) { return Event:Load; } else if (type == CacheRequestType:IFETCH) { return Event:Ifetch; } else if ((type == CacheRequestType:ST) || (type == CacheRequestType:ATOMIC)) { return Event:Store; } else { error("Invalid CacheRequestType"); } } MessageBuffer triggerQueue, ordered="true"; // ** OUT_PORTS ** out_port(requestNetwork_out, RequestMsg, requestFromCache); out_port(responseNetwork_out, ResponseMsg, responseFromCache); out_port(unblockNetwork_out, ResponseMsg, unblockFromCache); out_port(triggerQueue_out, TriggerMsg, triggerQueue); // ** IN_PORTS ** // Trigger Queue in_port(triggerQueue_in, TriggerMsg, triggerQueue) { if (triggerQueue_in.isReady()) { peek(triggerQueue_in, TriggerMsg) { if (in_msg.Type == TriggerType:ALL_ACKS) { trigger(Event:All_acks, in_msg.Address); } else { error("Unexpected message"); } } } } // Nothing from the request network // Forward Network in_port(forwardToCache_in, RequestMsg, forwardToCache) { if (forwardToCache_in.isReady()) { peek(forwardToCache_in, RequestMsg) { if (in_msg.Type == CoherenceRequestType:GETX) { if (in_msg.Requestor == machineID) { trigger(Event:Own_GETX, in_msg.Address); } else { trigger(Event:Fwd_GETX, in_msg.Address); } } else if (in_msg.Type == CoherenceRequestType:GETS) { trigger(Event:Fwd_GETS, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:INV) { trigger(Event:Inv, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:WB_ACK) { trigger(Event:Writeback_Ack, in_msg.Address); } else if (in_msg.Type == CoherenceRequestType:WB_NACK) { trigger(Event:Writeback_Nack, in_msg.Address); } else { error("Unexpected message"); } } } } // Response Network in_port(responseToCache_in, ResponseMsg, responseToCache) { if (responseToCache_in.isReady()) { peek(responseToCache_in, ResponseMsg) { if (in_msg.Type == CoherenceResponseType:ACK) { trigger(Event:Ack, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:DATA) { trigger(Event:Data, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE_CLEAN) { trigger(Event:Exclusive_Data_Clean, in_msg.Address); } else if (in_msg.Type == CoherenceResponseType:DATA_EXCLUSIVE_DIRTY) { trigger(Event:Exclusive_Data_Dirty, in_msg.Address); } else { error("Unexpected message"); } } } } // Nothing from the unblock network // Mandatory Queue in_port(mandatoryQueue_in, CacheMsg, mandatoryQueue, desc="...") { if (mandatoryQueue_in.isReady()) { peek(mandatoryQueue_in, CacheMsg) { // Check for data access to blocks in I-cache and ifetchs to blocks in D-cache if (in_msg.Type == CacheRequestType:IFETCH) { // ** INSTRUCTION ACCESS *** // Check to see if it is in the OTHER L1 if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, try to write it to the L2 if (L2cacheMemory.cacheAvail(in_msg.Address)) { trigger(Event:L1_to_L2, in_msg.Address); } else { trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address)); } } if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { if (L1IcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 if (L2cacheMemory.isTagPresent(in_msg.Address)) { // L2 has it (maybe not with the right permissions) trigger(Event:L2_to_L1I, in_msg.Address); } else { // We have room, the L2 doesn't have it, so the L1 fetches the line trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } } else { // No room in the L1, so we need to make room if (L2cacheMemory.cacheAvail(L1IcacheMemory.cacheProbe(in_msg.Address))) { // The L2 has room, so we move the line from the L1 to the L2 trigger(Event:L1_to_L2, L1IcacheMemory.cacheProbe(in_msg.Address)); } else { // The L2 does not have room, so we replace a line from the L2 trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1IcacheMemory.cacheProbe(in_msg.Address))); } } } } else { // *** DATA ACCESS *** // Check to see if it is in the OTHER L1 if (L1IcacheMemory.isTagPresent(in_msg.Address)) { // The block is in the wrong L1, try to write it to the L2 if (L2cacheMemory.cacheAvail(in_msg.Address)) { trigger(Event:L1_to_L2, in_msg.Address); } else { trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(in_msg.Address)); } } if (L1DcacheMemory.isTagPresent(in_msg.Address)) { // The tag matches for the L1, so the L1 fetches the line. We know it can't be in the L2 due to exclusion trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } else { if (L1DcacheMemory.cacheAvail(in_msg.Address)) { // L1 does't have the line, but we have space for it in the L1 if (L2cacheMemory.isTagPresent(in_msg.Address)) { // L2 has it (maybe not with the right permissions) trigger(Event:L2_to_L1D, in_msg.Address); } else { // We have room, the L2 doesn't have it, so the L1 fetches the line trigger(mandatory_request_type_to_event(in_msg.Type), in_msg.Address); } } else { // No room in the L1, so we need to make room if (L2cacheMemory.cacheAvail(L1DcacheMemory.cacheProbe(in_msg.Address))) { // The L2 has room, so we move the line from the L1 to the L2 trigger(Event:L1_to_L2, L1DcacheMemory.cacheProbe(in_msg.Address)); } else { // The L2 does not have room, so we replace a line from the L2 trigger(Event:L2_Replacement, L2cacheMemory.cacheProbe(L1DcacheMemory.cacheProbe(in_msg.Address))); } } } } } } } // ACTIONS action(a_issueGETS, "a", desc="Issue GETS") { enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETS; out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Request_Control; // TBEs[address].NumPendingMsgs := numberOfNodes(); // One from each other processor (n-1) plus the memory (+1) } } action(b_issueGETX, "b", desc="Issue GETX") { enqueue(requestNetwork_out, RequestMsg, latency="(ISSUE_LATENCY-1)") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:GETX; out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Request_Control; // TBEs[address].NumPendingMsgs := numberOfNodes(); // One from each other processor (n-1) plus the memory (+1) } } action(d_issuePUTX, "d", desc="Issue PUTX") { enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTX; out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(dd_issuePUTO, "\d", desc="Issue PUTO") { enqueue(requestNetwork_out, RequestMsg, latency="ISSUE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceRequestType:PUTO; out_msg.Requestor := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Writeback_Control; } } action(e_sendData, "e", desc="Send data from cache to requestor") { peek(forwardToCache_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := getCacheEntry(address).DataBlk; out_msg.Dirty := getCacheEntry(address).Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(ee_sendDataExclusive, "\e", desc="Send data from cache to requestor, don't keep a shared copy") { peek(forwardToCache_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA_EXCLUSIVE_DIRTY; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := getCacheEntry(address).DataBlk; out_msg.Dirty := getCacheEntry(address).Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(f_sendAck, "f", desc="Send ack from cache to requestor") { peek(forwardToCache_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:ACK; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.Acks := 0 - 1; // -1 out_msg.MessageSize := MessageSizeType:Response_Control; } } } action(g_sendUnblock, "g", desc="Send unblock to memory") { enqueue(unblockNetwork_out, ResponseMsg, latency="NULL_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:UNBLOCK; out_msg.Sender := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Unblock_Control; } } action(gg_sendUnblockExclusive, "\g", desc="Send unblock exclusive to memory") { enqueue(unblockNetwork_out, ResponseMsg, latency="NULL_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:UNBLOCK_EXCLUSIVE; out_msg.Sender := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.MessageSize := MessageSizeType:Unblock_Control; } } action(h_load_hit, "h", desc="Notify sequencer the load completed.") { DEBUG_EXPR(getCacheEntry(address).DataBlk); sequencer.readCallback(address, getCacheEntry(address).DataBlk); } action(hh_store_hit, "\h", desc="Notify sequencer that store completed.") { DEBUG_EXPR(getCacheEntry(address).DataBlk); sequencer.writeCallback(address, getCacheEntry(address).DataBlk); getCacheEntry(address).Dirty := true; } action(i_allocateTBE, "i", desc="Allocate TBE") { check_allocate(TBEs); TBEs.allocate(address); TBEs[address].DataBlk := getCacheEntry(address).DataBlk; // Data only used for writebacks TBEs[address].Dirty := getCacheEntry(address).Dirty; } action(j_popTriggerQueue, "j", desc="Pop trigger queue.") { triggerQueue_in.dequeue(); } action(k_popMandatoryQueue, "k", desc="Pop mandatory queue.") { mandatoryQueue_in.dequeue(); } action(l_popForwardQueue, "l", desc="Pop forwareded request queue.") { forwardToCache_in.dequeue(); } action(m_decrementNumberOfMessages, "m", desc="Decrement the number of messages for which we're waiting") { peek(responseToCache_in, ResponseMsg) { TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - in_msg.Acks; } } action(mm_decrementNumberOfMessages, "\m", desc="Decrement the number of messages for which we're waiting") { peek(forwardToCache_in, RequestMsg) { TBEs[address].NumPendingMsgs := TBEs[address].NumPendingMsgs - in_msg.Acks; } } action(n_popResponseQueue, "n", desc="Pop response queue") { responseToCache_in.dequeue(); } action(o_checkForCompletion, "o", desc="Check if we have received all the messages required for completion") { if (TBEs[address].NumPendingMsgs == 0) { enqueue(triggerQueue_out, TriggerMsg) { out_msg.Address := address; out_msg.Type := TriggerType:ALL_ACKS; } } } action(q_sendDataFromTBEToCache, "q", desc="Send data from TBE to cache") { peek(forwardToCache_in, RequestMsg) { enqueue(responseNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Type := CoherenceResponseType:DATA; out_msg.Sender := machineID; out_msg.Destination.add(in_msg.Requestor); out_msg.DataBlk := TBEs[address].DataBlk; out_msg.Dirty := TBEs[address].Dirty; out_msg.Acks := in_msg.Acks; out_msg.MessageSize := MessageSizeType:Response_Data; } } } action(qq_sendDataFromTBEToMemory, "\q", desc="Send data from TBE to memory") { enqueue(unblockNetwork_out, ResponseMsg, latency="CACHE_RESPONSE_LATENCY") { out_msg.Address := address; out_msg.Sender := machineID; out_msg.Destination.add(map_Address_to_Directory(address)); out_msg.Dirty := TBEs[address].Dirty; if (TBEs[address].Dirty) { out_msg.Type := CoherenceResponseType:WRITEBACK_DIRTY; out_msg.DataBlk := TBEs[address].DataBlk; out_msg.MessageSize := MessageSizeType:Writeback_Data; } else { out_msg.Type := CoherenceResponseType:WRITEBACK_CLEAN; // NOTE: in a real system this would not send data. We send // data here only so we can check it at the memory out_msg.DataBlk := TBEs[address].DataBlk; out_msg.MessageSize := MessageSizeType:Writeback_Control; } } } action(s_deallocateTBE, "s", desc="Deallocate TBE") { TBEs.deallocate(address); } action(u_writeDataToCache, "u", desc="Write data to cache") { peek(responseToCache_in, ResponseMsg) { getCacheEntry(address).DataBlk := in_msg.DataBlk; getCacheEntry(address).Dirty := in_msg.Dirty; } } action(v_writeDataToCacheVerify, "v", desc="Write data to cache, assert it was same as before") { peek(responseToCache_in, ResponseMsg) { assert(getCacheEntry(address).DataBlk == in_msg.DataBlk); getCacheEntry(address).DataBlk := in_msg.DataBlk; getCacheEntry(address).Dirty := in_msg.Dirty; } } action(kk_deallocateL1CacheBlock, "\k", desc="Deallocate cache block. Sets the cache to invalid, allowing a replacement in parallel with a fetch.") { if (L1DcacheMemory.isTagPresent(address)) { L1DcacheMemory.deallocate(address); } else { L1IcacheMemory.deallocate(address); } } action(ii_allocateL1DCacheBlock, "\i", desc="Set L1 D-cache tag equal to tag of block B.") { if (L1DcacheMemory.isTagPresent(address) == false) { L1DcacheMemory.allocate(address); } } action(jj_allocateL1ICacheBlock, "\j", desc="Set L1 I-cache tag equal to tag of block B.") { if (L1IcacheMemory.isTagPresent(address) == false) { L1IcacheMemory.allocate(address); } } action(vv_allocateL2CacheBlock, "\v", desc="Set L2 cache tag equal to tag of block B.") { L2cacheMemory.allocate(address); } action(rr_deallocateL2CacheBlock, "\r", desc="Deallocate L2 cache block. Sets the cache to not present, allowing a replacement in parallel with a fetch.") { L2cacheMemory.deallocate(address); } action(ss_copyFromL1toL2, "\s", desc="Copy data block from L1 (I or D) to L2") { if (L1DcacheMemory.isTagPresent(address)) { L2cacheMemory[address] := L1DcacheMemory[address]; } else { L2cacheMemory[address] := L1IcacheMemory[address]; } } action(tt_copyFromL2toL1, "\t", desc="Copy data block from L2 to L1 (I or D)") { if (L1DcacheMemory.isTagPresent(address)) { L1DcacheMemory[address] := L2cacheMemory[address]; } else { L1IcacheMemory[address] := L2cacheMemory[address]; } } action(uu_profileMiss, "\u", desc="Profile the demand miss") { peek(mandatoryQueue_in, CacheMsg) { profile_miss(in_msg, id); } } action(zz_recycleMandatoryQueue, "\z", desc="Send the head of the mandatory queue to the back of the queue.") { mandatoryQueue_in.recycle(); } //***************************************************** // TRANSITIONS //***************************************************** // Transitions for Load/Store/L2_Replacement from transient states transition({IM, SM, OM, IS, OI, MI, II}, {Store, L2_Replacement}) { zz_recycleMandatoryQueue; } transition({IM, IS, OI, MI, II}, {Load, Ifetch}) { zz_recycleMandatoryQueue; } transition({IM, SM, OM, IS, OI, MI, II}, L1_to_L2) { zz_recycleMandatoryQueue; } // Transitions moving data between the L1 and L2 caches transition({I, S, O, E, M, MM}, L1_to_L2) { vv_allocateL2CacheBlock; ss_copyFromL1toL2; // Not really needed for state I kk_deallocateL1CacheBlock; } transition({I, S, O, E, M, MM}, L2_to_L1D) { ii_allocateL1DCacheBlock; tt_copyFromL2toL1; // Not really needed for state I rr_deallocateL2CacheBlock; } transition({I, S, O, E, M, MM}, L2_to_L1I) { jj_allocateL1ICacheBlock; tt_copyFromL2toL1; // Not really needed for state I rr_deallocateL2CacheBlock; } // Transitions from Idle transition({NP, I}, Load, IS) { ii_allocateL1DCacheBlock; i_allocateTBE; a_issueGETS; uu_profileMiss; k_popMandatoryQueue; } transition({NP, I}, Ifetch, IS) { jj_allocateL1ICacheBlock; i_allocateTBE; a_issueGETS; uu_profileMiss; k_popMandatoryQueue; } transition({NP, I}, Store, IM) { ii_allocateL1DCacheBlock; i_allocateTBE; b_issueGETX; uu_profileMiss; k_popMandatoryQueue; } transition(I, L2_Replacement) { rr_deallocateL2CacheBlock; } transition({NP, I}, Inv) { f_sendAck; l_popForwardQueue; } // Transitions from Shared transition({S, SM}, {Load, Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(S, Store, SM) { i_allocateTBE; b_issueGETX; uu_profileMiss; k_popMandatoryQueue; } transition(S, L2_Replacement, I) { rr_deallocateL2CacheBlock; } transition(S, Inv, I) { f_sendAck; l_popForwardQueue; } // Transitions from Owned transition({O, OM}, {Load, Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(O, Store, OM) { i_allocateTBE; b_issueGETX; // p_decrementNumberOfMessagesByOne; uu_profileMiss; k_popMandatoryQueue; } transition(O, L2_Replacement, OI) { i_allocateTBE; dd_issuePUTO; rr_deallocateL2CacheBlock; } transition(O, Fwd_GETX, I) { e_sendData; l_popForwardQueue; } transition(O, Fwd_GETS) { e_sendData; l_popForwardQueue; } // Transitions from MM transition(MM, {Load, Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition(MM, Store) { hh_store_hit; k_popMandatoryQueue; } transition(MM, L2_Replacement, MI) { i_allocateTBE; d_issuePUTX; rr_deallocateL2CacheBlock; } transition(MM, Fwd_GETX, I) { e_sendData; l_popForwardQueue; } transition(MM, Fwd_GETS, I) { ee_sendDataExclusive; l_popForwardQueue; } // Transitions from M transition({E, M}, {Load, Ifetch}) { h_load_hit; k_popMandatoryQueue; } transition({E, M}, Store, MM) { hh_store_hit; k_popMandatoryQueue; } transition({E, M}, L2_Replacement, MI) { i_allocateTBE; d_issuePUTX; rr_deallocateL2CacheBlock; } transition({E, M}, Fwd_GETX, I) { e_sendData; l_popForwardQueue; } transition({E, M}, Fwd_GETS, O) { e_sendData; l_popForwardQueue; } // Transitions from IM transition(IM, Inv) { f_sendAck; l_popForwardQueue; } transition(IM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(IM, Data, OM) { u_writeDataToCache; m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } // Transitions from SM transition(SM, Inv, IM) { f_sendAck; l_popForwardQueue; } transition(SM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(SM, Data, OM) { v_writeDataToCacheVerify; m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } // Transitions from OM transition(OM, Own_GETX) { mm_decrementNumberOfMessages; o_checkForCompletion; l_popForwardQueue; } transition(OM, Fwd_GETX, IM) { e_sendData; l_popForwardQueue; } transition(OM, Fwd_GETS, OM) { e_sendData; l_popForwardQueue; } transition(OM, Ack) { m_decrementNumberOfMessages; o_checkForCompletion; n_popResponseQueue; } transition(OM, All_acks, MM) { hh_store_hit; gg_sendUnblockExclusive; s_deallocateTBE; j_popTriggerQueue; } // Transitions from IS transition(IS, Inv) { f_sendAck; l_popForwardQueue; } transition(IS, Data, S) { u_writeDataToCache; m_decrementNumberOfMessages; h_load_hit; g_sendUnblock; s_deallocateTBE; n_popResponseQueue; } transition(IS, Exclusive_Data_Clean, E) { u_writeDataToCache; m_decrementNumberOfMessages; h_load_hit; gg_sendUnblockExclusive; s_deallocateTBE; n_popResponseQueue; } transition(IS, Exclusive_Data_Dirty, M) { u_writeDataToCache; m_decrementNumberOfMessages; h_load_hit; gg_sendUnblockExclusive; s_deallocateTBE; n_popResponseQueue; } // Transitions from OI/MI transition(MI, Fwd_GETS) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition(MI, Fwd_GETX, II) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition(OI, Fwd_GETS) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition(OI, Fwd_GETX, II) { q_sendDataFromTBEToCache; l_popForwardQueue; } transition({OI, MI}, Writeback_Ack, I) { qq_sendDataFromTBEToMemory; s_deallocateTBE; l_popForwardQueue; } transition(MI, Writeback_Nack, OI) { // FIXME: This might cause deadlock by re-using the writeback // channel, we should handle this case differently. dd_issuePUTO; l_popForwardQueue; } // Transitions from II transition(II, Writeback_Ack, I) { g_sendUnblock; s_deallocateTBE; l_popForwardQueue; } transition(II, Writeback_Nack, I) { s_deallocateTBE; l_popForwardQueue; } transition(II, Inv) { f_sendAck; l_popForwardQueue; } }