gem5/src/cpu/inorder/inorder_dyn_inst.hh
Gabe Black 3a1428365a ExecContext: Rename the readBytes/writeBytes functions to readMem and writeMem.
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
2011-07-02 22:35:04 -07:00

1065 lines
34 KiB
C++

/*
* Copyright (c) 2007 MIPS Technologies, Inc.
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Korey Sewell
*/
#ifndef __CPU_INORDER_DYN_INST_HH__
#define __CPU_INORDER_DYN_INST_HH__
#include <bitset>
#include <list>
#include <string>
#include "arch/faults.hh"
#include "arch/isa_traits.hh"
#include "arch/mt.hh"
#include "arch/types.hh"
#include "arch/utility.hh"
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "config/full_system.hh"
#include "config/the_isa.hh"
#include "cpu/inorder/inorder_trace.hh"
#include "cpu/inorder/pipeline_traits.hh"
#include "cpu/inorder/resource.hh"
#include "cpu/inorder/resource_sked.hh"
#include "cpu/inorder/thread_state.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "cpu/thread_context.hh"
#include "debug/InOrderDynInst.hh"
#include "mem/packet.hh"
#include "sim/system.hh"
#if THE_ISA == ALPHA_ISA
#include "arch/alpha/ev5.hh"
#endif
/**
* @file
* Defines a dynamic instruction context for a inorder CPU model.
*/
// Forward declaration.
class StaticInstPtr;
class ResourceRequest;
class Packet;
class InOrderDynInst : public FastAlloc, public RefCounted
{
public:
// Binary machine instruction type.
typedef TheISA::MachInst MachInst;
// Extended machine instruction type
typedef TheISA::ExtMachInst ExtMachInst;
// Logical register index type.
typedef TheISA::RegIndex RegIndex;
// Integer register type.
typedef TheISA::IntReg IntReg;
// Floating point register type.
typedef TheISA::FloatReg FloatReg;
// Floating point register type.
typedef TheISA::FloatRegBits FloatRegBits;
// Floating point register type.
typedef TheISA::MiscReg MiscReg;
typedef short int PhysRegIndex;
/** The refcounted DynInst pointer to be used. In most cases this is
* what should be used, and not DynInst*.
*/
typedef RefCountingPtr<InOrderDynInst> DynInstPtr;
// The list of instructions iterator type.
typedef std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
};
public:
/** BaseDynInst constructor given a binary instruction.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
* NOTE: Must set Binary Instrution through Member Function
*/
InOrderDynInst(InOrderCPU *cpu, InOrderThreadState *state,
InstSeqNum seq_num, ThreadID tid, unsigned asid = 0);
/** InOrderDynInst destructor. */
~InOrderDynInst();
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
/** If this instruction is squashing, the number should we squash behind. */
InstSeqNum squashSeqNum;
enum Status {
RegDepMapEntry, /// Instruction is entered onto the RegDepMap
IqEntry, /// Instruction is in the IQ
RobEntry, /// Instruction is in the ROB
LsqEntry, /// Instruction is in the LSQ
Completed, /// Instruction has completed
ResultReady, /// Instruction has its result
CanIssue, /// Instruction can issue and execute
Issued, /// Instruction has issued
Executed, /// Instruction has executed
CanCommit, /// Instruction can commit
AtCommit, /// Instruction has reached commit
Committed, /// Instruction has committed
Squashed, /// Instruction is squashed
SquashedInIQ, /// Instruction is squashed in the IQ
SquashedInLSQ, /// Instruction is squashed in the LSQ
SquashedInROB, /// Instruction is squashed in the ROB
RecoverInst, /// Is a recover instruction
BlockingInst, /// Is a blocking instruction
ThreadsyncWait, /// Is a thread synchronization instruction
SerializeBefore, /// Needs to serialize on
/// instructions ahead of it
SerializeAfter, /// Needs to serialize instructions behind it
SerializeHandled, /// Serialization has been handled
RemoveList, /// Is Instruction on Remove List?
NumStatus
};
/** The status of this BaseDynInst. Several bits can be set. */
std::bitset<NumStatus> status;
/** The thread this instruction is from. */
short threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** The virtual processor number */
short virtProcNumber;
/** The StaticInst used by this BaseDynInst. */
StaticInstPtr staticInst;
/** InstRecord that tracks this instructions. */
Trace::InOrderTraceRecord *traceData;
/** Pointer to the Impl's CPU object. */
InOrderCPU *cpu;
/** Pointer to the thread state. */
InOrderThreadState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** The memory request. */
Request *req;
/** Pointer to the data for the memory access. */
uint8_t *memData;
/** Data used for a store for operation. */
uint64_t loadData;
/** Data used for a store for operation. */
uint64_t storeData;
/** List of active resource requests for this instruction */
std::list<ResourceRequest*> reqList;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The effective physical address. */
Addr physEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
/** How many source registers are ready. */
unsigned readyRegs;
enum ResultType {
None,
Integer,
Float,
FloatBits,
Double
};
/** An instruction src/dest has to be one of these types */
struct InstValue {
IntReg intVal;
union {
FloatReg f;
FloatRegBits i;
} fpVal;
InstValue()
{
intVal = 0;
fpVal.i = 0;
}
};
/** Result of an instruction execution */
struct InstResult {
ResultType type;
InstValue res;
Tick tick;
InstResult()
: type(None), tick(0)
{ }
};
/** The source of the instruction; assumes for now that there's only one
* destination register.
*/
InstValue instSrc[MaxInstSrcRegs];
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
InstResult instResult[MaxInstDestRegs];
/** PC of this instruction. */
TheISA::PCState pc;
/** Predicted next PC. */
TheISA::PCState predPC;
/** Address to get/write data from/to */
/* Fetching address when inst. starts, Data address for load/store after fetch*/
Addr memAddr;
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
/** Flattened register index of the destination registers of this
* instruction.
*/
TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
/** Flattened register index of the source registers of this
* instruction.
*/
TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
/** Physical register index of the destination registers of this
* instruction.
*/
PhysRegIndex _destRegIdx[MaxInstDestRegs];
/** Physical register index of the source registers of this
* instruction.
*/
PhysRegIndex _srcRegIdx[MaxInstSrcRegs];
/** Physical register index of the previous producers of the
* architected destinations.
*/
PhysRegIndex _prevDestRegIdx[MaxInstDestRegs];
int nextStage;
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
Tick memTime;
PacketDataPtr splitMemData;
RequestPtr splitMemReq;
int totalSize;
int split2ndSize;
Addr split2ndAddr;
bool split2ndAccess;
uint8_t split2ndData;
PacketDataPtr split2ndDataPtr;
unsigned split2ndFlags;
bool splitInst;
int splitFinishCnt;
uint64_t *split2ndStoreDataPtr;
bool splitInstSked;
////////////////////////////////////////////////////////////
//
// BASE INSTRUCTION INFORMATION.
//
////////////////////////////////////////////////////////////
std::string instName()
{ return (staticInst) ? staticInst->getName() : "undecoded-inst"; }
void setMachInst(ExtMachInst inst);
ExtMachInst getMachInst() { return staticInst->machInst; }
/** Sets the StaticInst. */
void setStaticInst(StaticInstPtr &static_inst);
/** Sets the sequence number. */
void setSeqNum(InstSeqNum seq_num) { seqNum = seq_num; }
/** Sets the ASID. */
void setASID(short addr_space_id) { asid = addr_space_id; }
/** Reads the thread id. */
short readTid() { return threadNumber; }
/** Sets the thread id. */
void setTid(ThreadID tid) { threadNumber = tid; }
void setVpn(int id) { virtProcNumber = id; }
int readVpn() { return virtProcNumber; }
/** Sets the pointer to the thread state. */
void setThreadState(InOrderThreadState *state) { thread = state; }
/** Returns the thread context. */
ThreadContext *tcBase() { return thread->getTC(); }
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Read this CPU's ID. */
int cpuId();
/** Read this context's system-wide ID **/
int contextId() { return thread->contextId(); }
////////////////////////////////////////////////////////////
//
// INSTRUCTION TYPES - Forward checks to StaticInst object.
//
////////////////////////////////////////////////////////////
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isStoreConditional() const
{ return staticInst->isStoreConditional(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isSerializeBefore() const
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
bool isSerializeAfter() const
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isIprAccess() const { return staticInst->isIprAccess(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
bool isSyscall() const
{ return staticInst->isSyscall(); }
/////////////////////////////////////////////
//
// RESOURCE SCHEDULING
//
/////////////////////////////////////////////
typedef ThePipeline::RSkedPtr RSkedPtr;
bool inFrontEnd;
RSkedPtr frontSked;
RSkedIt frontSked_end;
RSkedPtr backSked;
RSkedIt backSked_end;
RSkedIt curSkedEntry;
void setFrontSked(RSkedPtr front_sked)
{
frontSked = front_sked;
frontSked_end.init(frontSked);
frontSked_end = frontSked->end();
//DPRINTF(InOrderDynInst, "Set FrontSked End to : %x \n" ,
// frontSked_end.getIt()/*, frontSked->end()*/);
//assert(frontSked_end == frontSked->end());
// This initializes instruction to be able
// to walk the resource schedule
curSkedEntry.init(frontSked);
curSkedEntry = frontSked->begin();
}
void setBackSked(RSkedPtr back_sked)
{
backSked = back_sked;
backSked_end.init(backSked);
backSked_end = backSked->end();
}
void setNextStage(int stage_num) { nextStage = stage_num; }
int getNextStage() { return nextStage; }
/** Print Resource Schedule */
void printSked()
{
if (frontSked != NULL) {
frontSked->print();
}
if (backSked != NULL) {
backSked->print();
}
}
/** Return Next Resource Stage To Be Used */
int nextResStage()
{
assert((inFrontEnd && curSkedEntry != frontSked_end) ||
(!inFrontEnd && curSkedEntry != backSked_end));
return curSkedEntry->stageNum;
}
/** Return Next Resource To Be Used */
int nextResource()
{
assert((inFrontEnd && curSkedEntry != frontSked_end) ||
(!inFrontEnd && curSkedEntry != backSked_end));
return curSkedEntry->resNum;
}
/** Finish using a schedule entry, increment to next entry */
bool finishSkedEntry()
{
curSkedEntry++;
if (inFrontEnd && curSkedEntry == frontSked_end) {
DPRINTF(InOrderDynInst, "[sn:%i] Switching to "
"back end schedule.\n", seqNum);
assert(backSked != NULL);
curSkedEntry.init(backSked);
curSkedEntry = backSked->begin();
inFrontEnd = false;
} else if (!inFrontEnd && curSkedEntry == backSked_end) {
return true;
}
DPRINTF(InOrderDynInst, "[sn:%i] Next Stage: %i "
"Next Resource: %i.\n", seqNum, curSkedEntry->stageNum,
curSkedEntry->resNum);
return false;
}
/** Release a Resource Request (Currently Unused) */
void releaseReq(ResourceRequest* req);
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Executes the instruction.*/
Fault execute();
unsigned curResSlot;
unsigned getCurResSlot() { return curResSlot; }
void setCurResSlot(unsigned slot_num) { curResSlot = slot_num; }
/** Calls a syscall. */
#if FULL_SYSTEM
/** Calls hardware return from error interrupt. */
Fault hwrei();
/** Traps to handle specified fault. */
void trap(Fault fault);
bool simPalCheck(int palFunc);
#else
short syscallNum;
/** Calls a syscall. */
void syscall(int64_t callnum);
#endif
////////////////////////////////////////////////////////////
//
// MULTITHREADING INTERFACE TO CPU MODELS
//
////////////////////////////////////////////////////////////
virtual void deallocateContext(int thread_num);
////////////////////////////////////////////////////////////
//
// PROGRAM COUNTERS - PC/NPC/NPC
//
////////////////////////////////////////////////////////////
/** Read the PC of this instruction. */
const TheISA::PCState &pcState() const { return pc; }
/** Sets the PC of this instruction. */
void pcState(const TheISA::PCState &_pc) { pc = _pc; }
const Addr instAddr() { return pc.instAddr(); }
const Addr nextInstAddr() { return pc.nextInstAddr(); }
const MicroPC microPC() { return pc.microPC(); }
////////////////////////////////////////////////////////////
//
// BRANCH PREDICTION
//
////////////////////////////////////////////////////////////
/** Set the predicted target of this current instruction. */
void setPredTarg(const TheISA::PCState &predictedPC)
{ predPC = predictedPC; }
/** Returns the predicted target of the branch. */
TheISA::PCState readPredTarg() { return predPC; }
/** Returns the predicted PC immediately after the branch. */
Addr predInstAddr() { return predPC.instAddr(); }
/** Returns the predicted PC two instructions after the branch */
Addr predNextInstAddr() { return predPC.nextInstAddr(); }
/** Returns the predicted micro PC after the branch */
Addr readPredMicroPC() { return predPC.microPC(); }
/** Returns whether the instruction was predicted taken or not. */
bool predTaken() { return predictTaken; }
/** Returns whether the instruction mispredicted. */
bool
mispredicted()
{
TheISA::PCState nextPC = pc;
TheISA::advancePC(nextPC, staticInst);
return !(nextPC == predPC);
}
/** Returns the branch target address. */
TheISA::PCState branchTarget() const
{ return staticInst->branchTarget(pc); }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
void setBranchPred(bool prediction) { predictTaken = prediction; }
int squashingStage;
bool predictTaken;
bool procDelaySlotOnMispred;
void setSquashInfo(unsigned stage_num);
////////////////////////////////////////////
//
// MEMORY ACCESS
//
////////////////////////////////////////////
Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
Fault writeMem(uint8_t *data, unsigned size,
Addr addr, unsigned flags, uint64_t *res);
/** Initiates a memory access - Calculate Eff. Addr & Initiate Memory
* Access Only valid for memory operations.
*/
Fault initiateAcc();
/** Completes a memory access - Only valid for memory operations. */
Fault completeAcc(Packet *pkt);
/** Calculates Eff. Addr. part of a memory instruction. */
Fault calcEA();
/** Read Effective Address from instruction & do memory access */
Fault memAccess();
RequestPtr fetchMemReq;
RequestPtr dataMemReq;
bool memAddrReady;
bool validMemAddr()
{ return memAddrReady; }
void setMemAddr(Addr addr)
{ memAddr = addr; memAddrReady = true;}
void unsetMemAddr()
{ memAddrReady = false;}
Addr getMemAddr()
{ return memAddr; }
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return instEffAddr; }
/** Returns whether or not the eff. addr. calculation has been completed.*/
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready.
* Assume that src registers 1..n-1 are the ones that the
* EA calc depends on. (i.e. src reg 0 is the source of the data to be
* stored)
*/
bool eaSrcsReady()
{
for (int i = 1; i < numSrcRegs(); ++i) {
if (!_readySrcRegIdx[i])
return false;
}
return true;
}
//////////////////////////////////////////////////
//
// SOURCE-DESTINATION REGISTER INDEXING
//
//////////////////////////////////////////////////
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
//////////////////////////////////////////////////
//
// RENAME/PHYSICAL REGISTER FILE SUPPORT
//
//////////////////////////////////////////////////
/** Returns the physical register index of the i'th destination
* register.
*/
PhysRegIndex renamedDestRegIdx(int idx) const
{
return _destRegIdx[idx];
}
/** Returns the physical register index of the i'th source register. */
PhysRegIndex renamedSrcRegIdx(int idx) const
{
return _srcRegIdx[idx];
}
/** Flattens a source architectural register index into a logical index.
*/
void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
{
_flatSrcRegIdx[idx] = flattened_src;
}
/** Flattens a destination architectural register index into a logical
* index.
*/
void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
{
_flatDestRegIdx[idx] = flattened_dest;
}
/** Returns the flattened register index of the i'th destination
* register.
*/
TheISA::RegIndex flattenedDestRegIdx(int idx) const
{
return _flatDestRegIdx[idx];
}
/** Returns the flattened register index of the i'th source register */
TheISA::RegIndex flattenedSrcRegIdx(int idx) const
{
return _flatSrcRegIdx[idx];
}
/** Returns the physical register index of the previous physical register
* that remapped to the same logical register index.
*/
PhysRegIndex prevDestRegIdx(int idx) const
{
return _prevDestRegIdx[idx];
}
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Records that one of the source registers is ready. */
void markSrcRegReady()
{
if (++readyRegs == numSrcRegs()) {
status.set(CanIssue);
}
}
/** Marks a specific register as ready. */
void markSrcRegReady(RegIndex src_idx)
{
_readySrcRegIdx[src_idx] = true;
markSrcRegReady();
}
/** Renames a destination register to a physical register. Also records
* the previous physical register that the logical register mapped to.
*/
void renameDestReg(int idx,
PhysRegIndex renamed_dest,
PhysRegIndex previous_rename)
{
_destRegIdx[idx] = renamed_dest;
_prevDestRegIdx[idx] = previous_rename;
}
/** Renames a source logical register to the physical register which
* has/will produce that logical register's result.
* @todo: add in whether or not the source register is ready.
*/
void renameSrcReg(int idx, PhysRegIndex renamed_src)
{
_srcRegIdx[idx] = renamed_src;
}
PhysRegIndex readDestRegIdx(int idx)
{
return _destRegIdx[idx];
}
void setDestRegIdx(int idx, PhysRegIndex dest_idx)
{
_destRegIdx[idx] = dest_idx;
}
int getDestIdxNum(PhysRegIndex dest_idx)
{
for (int i=0; i < staticInst->numDestRegs(); i++) {
if (_flatDestRegIdx[i] == dest_idx)
return i;
}
return -1;
}
PhysRegIndex readSrcRegIdx(int idx)
{
return _srcRegIdx[idx];
}
void setSrcRegIdx(int idx, PhysRegIndex src_idx)
{
_srcRegIdx[idx] = src_idx;
}
int getSrcIdxNum(PhysRegIndex src_idx)
{
for (int i=0; i < staticInst->numSrcRegs(); i++) {
if (_srcRegIdx[i] == src_idx)
return i;
}
return -1;
}
////////////////////////////////////////////////////
//
// SOURCE-DESTINATION REGISTER VALUES
//
////////////////////////////////////////////////////
/** Functions that sets an integer or floating point
* source register to a value. */
void setIntSrc(int idx, uint64_t val);
void setFloatSrc(int idx, FloatReg val);
void setFloatRegBitsSrc(int idx, TheISA::FloatRegBits val);
TheISA::IntReg* getIntSrcPtr(int idx) { return &instSrc[idx].intVal; }
uint64_t readIntSrc(int idx) { return instSrc[idx].intVal; }
/** These Instructions read a integer/float/misc. source register
* value in the instruction. The instruction's execute function will
* call these and it is the interface that is used by the ISA descr.
* language (which is why the name isnt readIntSrc(...)) Note: That
* the source reg. value is set using the setSrcReg() function.
*/
IntReg readIntRegOperand(const StaticInst *si, int idx, ThreadID tid = 0);
FloatReg readFloatRegOperand(const StaticInst *si, int idx);
TheISA::FloatRegBits readFloatRegOperandBits(const StaticInst *si, int idx);
MiscReg readMiscReg(int misc_reg);
MiscReg readMiscRegNoEffect(int misc_reg);
MiscReg readMiscRegOperand(const StaticInst *si, int idx);
MiscReg readMiscRegOperandNoEffect(const StaticInst *si, int idx);
/** Returns the result value instruction. */
ResultType resultType(int idx)
{
return instResult[idx].type;
}
IntReg readIntResult(int idx)
{
return instResult[idx].res.intVal;
}
FloatReg readFloatResult(int idx)
{
return instResult[idx].res.fpVal.f;
}
FloatRegBits readFloatBitsResult(int idx)
{
return instResult[idx].res.fpVal.i;
}
Tick readResultTime(int idx) { return instResult[idx].tick; }
IntReg* getIntResultPtr(int idx) { return &instResult[idx].res.intVal; }
/** This is the interface that an instruction will use to write
* it's destination register.
*/
void setIntRegOperand(const StaticInst *si, int idx, IntReg val);
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val);
void setFloatRegOperandBits(const StaticInst *si, int idx,
TheISA::FloatRegBits val);
void setMiscReg(int misc_reg, const MiscReg &val);
void setMiscRegNoEffect(int misc_reg, const MiscReg &val);
void setMiscRegOperand(const StaticInst *si, int idx, const MiscReg &val);
void setMiscRegOperandNoEffect(const StaticInst *si, int idx,
const MiscReg &val);
virtual uint64_t readRegOtherThread(unsigned idx,
ThreadID tid = InvalidThreadID);
virtual void setRegOtherThread(unsigned idx, const uint64_t &val,
ThreadID tid = InvalidThreadID);
/** Returns the number of consecutive store conditional failures. */
unsigned readStCondFailures()
{ return thread->storeCondFailures; }
/** Sets the number of consecutive store conditional failures. */
void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
//////////////////////////////////////////////////////////////
//
// INSTRUCTION STATUS FLAGS (READ/SET)
//
//////////////////////////////////////////////////////////////
/** Sets this instruction as entered on the CPU Reg Dep Map */
void setRegDepEntry() { status.set(RegDepMapEntry); }
/** Unsets this instruction as entered on the CPU Reg Dep Map */
void clearRegDepEntry() { status.reset(RegDepMapEntry); }
/** Returns whether or not the entry is on the CPU Reg Dep Map */
bool isRegDepEntry() const { return status[RegDepMapEntry]; }
/** Sets this instruction as entered on the CPU Reg Dep Map */
void setRemoveList() { status.set(RemoveList); }
/** Returns whether or not the entry is on the CPU Reg Dep Map */
bool isRemoveList() const { return status[RemoveList]; }
/** Sets this instruction as completed. */
void setCompleted() { status.set(Completed); }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return status[Completed]; }
/** Marks the result as ready. */
void setResultReady() { status.set(ResultReady); }
/** Returns whether or not the result is ready. */
bool isResultReady() const { return status[ResultReady]; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { status.set(CanIssue); }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return status[CanIssue]; }
/** Sets this instruction as issued from the IQ. */
void setIssued() { status.set(Issued); }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return status[Issued]; }
/** Sets this instruction as executed. */
void setExecuted() { status.set(Executed); }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return status[Executed]; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { status.set(CanCommit); }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { status.reset(CanCommit); }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return status[CanCommit]; }
void setAtCommit() { status.set(AtCommit); }
bool isAtCommit() { return status[AtCommit]; }
/** Sets this instruction as committed. */
void setCommitted() { status.set(Committed); }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return status[Committed]; }
/** Sets this instruction as squashed. */
void setSquashed() { status.set(Squashed); }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return status[Squashed]; }
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { status.set(SerializeBefore); }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { status.reset(SerializeBefore); }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return status[SerializeBefore]; }
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { status.set(SerializeAfter); }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { status.reset(SerializeAfter); }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return status[SerializeAfter]; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { status.set(SerializeHandled); }
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return status[SerializeHandled]; }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
bool onInstList;
/** Returns iterator to this instruction in the list of all insts. */
ListIt getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { onInstList = true; instListIt = _instListIt; }
/** Count of total number of dynamic instructions. */
static int instcount;
void resetInstCount();
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
//inline int curCount() { return curCount(); }
};
#endif // __CPU_BASE_DYN_INST_HH__