gem5/src/cpu/base_dyn_inst.hh
Gabe Black 3a1428365a ExecContext: Rename the readBytes/writeBytes functions to readMem and writeMem.
readBytes and writeBytes had the word "bytes" in their names because they
accessed blobs of bytes. This distinguished them from the read and write
functions which handled higher level data types. Because those functions don't
exist any more, this change renames readBytes and writeBytes to more general
names, readMem and writeMem, which reflect the fact that they are how you read
and write memory. This also makes their names more consistent with the
register reading/writing functions, although those are still read and set for
some reason.
2011-07-02 22:35:04 -07:00

1020 lines
34 KiB
C++

/*
* Copyright (c) 2011 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Copyright (c) 2004-2006 The Regents of The University of Michigan
* Copyright (c) 2009 The University of Edinburgh
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Kevin Lim
* Timothy M. Jones
*/
#ifndef __CPU_BASE_DYN_INST_HH__
#define __CPU_BASE_DYN_INST_HH__
#include <bitset>
#include <list>
#include <string>
#include "arch/faults.hh"
#include "arch/utility.hh"
#include "base/fast_alloc.hh"
#include "base/trace.hh"
#include "config/full_system.hh"
#include "config/the_isa.hh"
#include "cpu/o3/comm.hh"
#include "cpu/exetrace.hh"
#include "cpu/inst_seq.hh"
#include "cpu/op_class.hh"
#include "cpu/static_inst.hh"
#include "cpu/translation.hh"
#include "mem/packet.hh"
#include "sim/byteswap.hh"
#include "sim/system.hh"
#include "sim/tlb.hh"
/**
* @file
* Defines a dynamic instruction context.
*/
// Forward declaration.
class StaticInstPtr;
template <class Impl>
class BaseDynInst : public FastAlloc, public RefCounted
{
public:
// Typedef for the CPU.
typedef typename Impl::CPUType ImplCPU;
typedef typename ImplCPU::ImplState ImplState;
// Logical register index type.
typedef TheISA::RegIndex RegIndex;
// Integer register type.
typedef TheISA::IntReg IntReg;
// Floating point register type.
typedef TheISA::FloatReg FloatReg;
// The DynInstPtr type.
typedef typename Impl::DynInstPtr DynInstPtr;
// The list of instructions iterator type.
typedef typename std::list<DynInstPtr>::iterator ListIt;
enum {
MaxInstSrcRegs = TheISA::MaxInstSrcRegs, /// Max source regs
MaxInstDestRegs = TheISA::MaxInstDestRegs, /// Max dest regs
};
/** The StaticInst used by this BaseDynInst. */
StaticInstPtr staticInst;
////////////////////////////////////////////
//
// INSTRUCTION EXECUTION
//
////////////////////////////////////////////
/** InstRecord that tracks this instructions. */
Trace::InstRecord *traceData;
void demapPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
void demapInstPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
void demapDataPage(Addr vaddr, uint64_t asn)
{
cpu->demapPage(vaddr, asn);
}
Fault readMem(Addr addr, uint8_t *data, unsigned size, unsigned flags);
Fault writeMem(uint8_t *data, unsigned size,
Addr addr, unsigned flags, uint64_t *res);
/** Splits a request in two if it crosses a dcache block. */
void splitRequest(RequestPtr req, RequestPtr &sreqLow,
RequestPtr &sreqHigh);
/** Initiate a DTB address translation. */
void initiateTranslation(RequestPtr req, RequestPtr sreqLow,
RequestPtr sreqHigh, uint64_t *res,
BaseTLB::Mode mode);
/** Finish a DTB address translation. */
void finishTranslation(WholeTranslationState *state);
/** True if the DTB address translation has started. */
bool translationStarted;
/** True if the DTB address translation has completed. */
bool translationCompleted;
/**
* Returns true if the DTB address translation is being delayed due to a hw
* page table walk.
*/
bool isTranslationDelayed() const
{
return (translationStarted && !translationCompleted);
}
/**
* Saved memory requests (needed when the DTB address translation is
* delayed due to a hw page table walk).
*/
RequestPtr savedReq;
RequestPtr savedSreqLow;
RequestPtr savedSreqHigh;
/** @todo: Consider making this private. */
public:
/** The sequence number of the instruction. */
InstSeqNum seqNum;
enum Status {
IqEntry, /// Instruction is in the IQ
RobEntry, /// Instruction is in the ROB
LsqEntry, /// Instruction is in the LSQ
Completed, /// Instruction has completed
ResultReady, /// Instruction has its result
CanIssue, /// Instruction can issue and execute
Issued, /// Instruction has issued
Executed, /// Instruction has executed
CanCommit, /// Instruction can commit
AtCommit, /// Instruction has reached commit
Committed, /// Instruction has committed
Squashed, /// Instruction is squashed
SquashedInIQ, /// Instruction is squashed in the IQ
SquashedInLSQ, /// Instruction is squashed in the LSQ
SquashedInROB, /// Instruction is squashed in the ROB
RecoverInst, /// Is a recover instruction
BlockingInst, /// Is a blocking instruction
ThreadsyncWait, /// Is a thread synchronization instruction
SerializeBefore, /// Needs to serialize on
/// instructions ahead of it
SerializeAfter, /// Needs to serialize instructions behind it
SerializeHandled, /// Serialization has been handled
NumStatus
};
/** The status of this BaseDynInst. Several bits can be set. */
std::bitset<NumStatus> status;
/** The thread this instruction is from. */
ThreadID threadNumber;
/** data address space ID, for loads & stores. */
short asid;
/** How many source registers are ready. */
unsigned readyRegs;
/** Pointer to the Impl's CPU object. */
ImplCPU *cpu;
/** Pointer to the thread state. */
ImplState *thread;
/** The kind of fault this instruction has generated. */
Fault fault;
/** Pointer to the data for the memory access. */
uint8_t *memData;
/** The effective virtual address (lds & stores only). */
Addr effAddr;
/** The size of the request */
Addr effSize;
/** Is the effective virtual address valid. */
bool effAddrValid;
/** The effective physical address. */
Addr physEffAddr;
/** The memory request flags (from translation). */
unsigned memReqFlags;
union Result {
uint64_t integer;
// float fp;
double dbl;
};
/** The result of the instruction; assumes for now that there's only one
* destination register.
*/
Result instResult;
/** Records changes to result? */
bool recordResult;
/** Did this instruction execute, or is it predicated false */
bool predicate;
protected:
/** PC state for this instruction. */
TheISA::PCState pc;
/** Predicted PC state after this instruction. */
TheISA::PCState predPC;
/** If this is a branch that was predicted taken */
bool predTaken;
public:
#ifdef DEBUG
void dumpSNList();
#endif
/** Whether or not the source register is ready.
* @todo: Not sure this should be here vs the derived class.
*/
bool _readySrcRegIdx[MaxInstSrcRegs];
protected:
/** Flattened register index of the destination registers of this
* instruction.
*/
TheISA::RegIndex _flatDestRegIdx[TheISA::MaxInstDestRegs];
/** Flattened register index of the source registers of this
* instruction.
*/
TheISA::RegIndex _flatSrcRegIdx[TheISA::MaxInstSrcRegs];
/** Physical register index of the destination registers of this
* instruction.
*/
PhysRegIndex _destRegIdx[TheISA::MaxInstDestRegs];
/** Physical register index of the source registers of this
* instruction.
*/
PhysRegIndex _srcRegIdx[TheISA::MaxInstSrcRegs];
/** Physical register index of the previous producers of the
* architected destinations.
*/
PhysRegIndex _prevDestRegIdx[TheISA::MaxInstDestRegs];
public:
/** Returns the physical register index of the i'th destination
* register.
*/
PhysRegIndex renamedDestRegIdx(int idx) const
{
return _destRegIdx[idx];
}
/** Returns the physical register index of the i'th source register. */
PhysRegIndex renamedSrcRegIdx(int idx) const
{
return _srcRegIdx[idx];
}
/** Returns the flattened register index of the i'th destination
* register.
*/
TheISA::RegIndex flattenedDestRegIdx(int idx) const
{
return _flatDestRegIdx[idx];
}
/** Returns the flattened register index of the i'th source register */
TheISA::RegIndex flattenedSrcRegIdx(int idx) const
{
return _flatSrcRegIdx[idx];
}
/** Returns the physical register index of the previous physical register
* that remapped to the same logical register index.
*/
PhysRegIndex prevDestRegIdx(int idx) const
{
return _prevDestRegIdx[idx];
}
/** Renames a destination register to a physical register. Also records
* the previous physical register that the logical register mapped to.
*/
void renameDestReg(int idx,
PhysRegIndex renamed_dest,
PhysRegIndex previous_rename)
{
_destRegIdx[idx] = renamed_dest;
_prevDestRegIdx[idx] = previous_rename;
}
/** Renames a source logical register to the physical register which
* has/will produce that logical register's result.
* @todo: add in whether or not the source register is ready.
*/
void renameSrcReg(int idx, PhysRegIndex renamed_src)
{
_srcRegIdx[idx] = renamed_src;
}
/** Flattens a source architectural register index into a logical index.
*/
void flattenSrcReg(int idx, TheISA::RegIndex flattened_src)
{
_flatSrcRegIdx[idx] = flattened_src;
}
/** Flattens a destination architectural register index into a logical
* index.
*/
void flattenDestReg(int idx, TheISA::RegIndex flattened_dest)
{
_flatDestRegIdx[idx] = flattened_dest;
}
/** BaseDynInst constructor given a binary instruction.
* @param staticInst A StaticInstPtr to the underlying instruction.
* @param pc The PC state for the instruction.
* @param predPC The predicted next PC state for the instruction.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(StaticInstPtr staticInst, TheISA::PCState pc,
TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
/** BaseDynInst constructor given a binary instruction.
* @param inst The binary instruction.
* @param _pc The PC state for the instruction.
* @param _predPC The predicted next PC state for the instruction.
* @param seq_num The sequence number of the instruction.
* @param cpu Pointer to the instruction's CPU.
*/
BaseDynInst(TheISA::ExtMachInst inst, TheISA::PCState pc,
TheISA::PCState predPC, InstSeqNum seq_num, ImplCPU *cpu);
/** BaseDynInst constructor given a StaticInst pointer.
* @param _staticInst The StaticInst for this BaseDynInst.
*/
BaseDynInst(StaticInstPtr &_staticInst);
/** BaseDynInst destructor. */
~BaseDynInst();
private:
/** Function to initialize variables in the constructors. */
void initVars();
public:
/** Dumps out contents of this BaseDynInst. */
void dump();
/** Dumps out contents of this BaseDynInst into given string. */
void dump(std::string &outstring);
/** Read this CPU's ID. */
int cpuId() { return cpu->cpuId(); }
/** Read this context's system-wide ID **/
int contextId() { return thread->contextId(); }
/** Returns the fault type. */
Fault getFault() { return fault; }
/** Checks whether or not this instruction has had its branch target
* calculated yet. For now it is not utilized and is hacked to be
* always false.
* @todo: Actually use this instruction.
*/
bool doneTargCalc() { return false; }
/** Set the predicted target of this current instruction. */
void setPredTarg(const TheISA::PCState &_predPC)
{
predPC = _predPC;
}
const TheISA::PCState &readPredTarg() { return predPC; }
/** Returns the predicted PC immediately after the branch. */
Addr predInstAddr() { return predPC.instAddr(); }
/** Returns the predicted PC two instructions after the branch */
Addr predNextInstAddr() { return predPC.nextInstAddr(); }
/** Returns the predicted micro PC after the branch */
Addr predMicroPC() { return predPC.microPC(); }
/** Returns whether the instruction was predicted taken or not. */
bool readPredTaken()
{
return predTaken;
}
void setPredTaken(bool predicted_taken)
{
predTaken = predicted_taken;
}
/** Returns whether the instruction mispredicted. */
bool mispredicted()
{
TheISA::PCState tempPC = pc;
TheISA::advancePC(tempPC, staticInst);
return !(tempPC == predPC);
}
//
// Instruction types. Forward checks to StaticInst object.
//
bool isNop() const { return staticInst->isNop(); }
bool isMemRef() const { return staticInst->isMemRef(); }
bool isLoad() const { return staticInst->isLoad(); }
bool isStore() const { return staticInst->isStore(); }
bool isStoreConditional() const
{ return staticInst->isStoreConditional(); }
bool isInstPrefetch() const { return staticInst->isInstPrefetch(); }
bool isDataPrefetch() const { return staticInst->isDataPrefetch(); }
bool isInteger() const { return staticInst->isInteger(); }
bool isFloating() const { return staticInst->isFloating(); }
bool isControl() const { return staticInst->isControl(); }
bool isCall() const { return staticInst->isCall(); }
bool isReturn() const { return staticInst->isReturn(); }
bool isDirectCtrl() const { return staticInst->isDirectCtrl(); }
bool isIndirectCtrl() const { return staticInst->isIndirectCtrl(); }
bool isCondCtrl() const { return staticInst->isCondCtrl(); }
bool isUncondCtrl() const { return staticInst->isUncondCtrl(); }
bool isCondDelaySlot() const { return staticInst->isCondDelaySlot(); }
bool isThreadSync() const { return staticInst->isThreadSync(); }
bool isSerializing() const { return staticInst->isSerializing(); }
bool isSerializeBefore() const
{ return staticInst->isSerializeBefore() || status[SerializeBefore]; }
bool isSerializeAfter() const
{ return staticInst->isSerializeAfter() || status[SerializeAfter]; }
bool isSquashAfter() const { return staticInst->isSquashAfter(); }
bool isMemBarrier() const { return staticInst->isMemBarrier(); }
bool isWriteBarrier() const { return staticInst->isWriteBarrier(); }
bool isNonSpeculative() const { return staticInst->isNonSpeculative(); }
bool isQuiesce() const { return staticInst->isQuiesce(); }
bool isIprAccess() const { return staticInst->isIprAccess(); }
bool isUnverifiable() const { return staticInst->isUnverifiable(); }
bool isSyscall() const { return staticInst->isSyscall(); }
bool isMacroop() const { return staticInst->isMacroop(); }
bool isMicroop() const { return staticInst->isMicroop(); }
bool isDelayedCommit() const { return staticInst->isDelayedCommit(); }
bool isLastMicroop() const { return staticInst->isLastMicroop(); }
bool isFirstMicroop() const { return staticInst->isFirstMicroop(); }
bool isMicroBranch() const { return staticInst->isMicroBranch(); }
/** Temporarily sets this instruction as a serialize before instruction. */
void setSerializeBefore() { status.set(SerializeBefore); }
/** Clears the serializeBefore part of this instruction. */
void clearSerializeBefore() { status.reset(SerializeBefore); }
/** Checks if this serializeBefore is only temporarily set. */
bool isTempSerializeBefore() { return status[SerializeBefore]; }
/** Temporarily sets this instruction as a serialize after instruction. */
void setSerializeAfter() { status.set(SerializeAfter); }
/** Clears the serializeAfter part of this instruction.*/
void clearSerializeAfter() { status.reset(SerializeAfter); }
/** Checks if this serializeAfter is only temporarily set. */
bool isTempSerializeAfter() { return status[SerializeAfter]; }
/** Sets the serialization part of this instruction as handled. */
void setSerializeHandled() { status.set(SerializeHandled); }
/** Checks if the serialization part of this instruction has been
* handled. This does not apply to the temporary serializing
* state; it only applies to this instruction's own permanent
* serializing state.
*/
bool isSerializeHandled() { return status[SerializeHandled]; }
/** Returns the opclass of this instruction. */
OpClass opClass() const { return staticInst->opClass(); }
/** Returns the branch target address. */
TheISA::PCState branchTarget() const
{ return staticInst->branchTarget(pc); }
/** Returns the number of source registers. */
int8_t numSrcRegs() const { return staticInst->numSrcRegs(); }
/** Returns the number of destination registers. */
int8_t numDestRegs() const { return staticInst->numDestRegs(); }
// the following are used to track physical register usage
// for machines with separate int & FP reg files
int8_t numFPDestRegs() const { return staticInst->numFPDestRegs(); }
int8_t numIntDestRegs() const { return staticInst->numIntDestRegs(); }
/** Returns the logical register index of the i'th destination register. */
RegIndex destRegIdx(int i) const { return staticInst->destRegIdx(i); }
/** Returns the logical register index of the i'th source register. */
RegIndex srcRegIdx(int i) const { return staticInst->srcRegIdx(i); }
/** Returns the result of an integer instruction. */
uint64_t readIntResult() { return instResult.integer; }
/** Returns the result of a floating point instruction. */
float readFloatResult() { return (float)instResult.dbl; }
/** Returns the result of a floating point (double) instruction. */
double readDoubleResult() { return instResult.dbl; }
/** Records an integer register being set to a value. */
void setIntRegOperand(const StaticInst *si, int idx, uint64_t val)
{
if (recordResult)
instResult.integer = val;
}
/** Records an fp register being set to a value. */
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val,
int width)
{
if (recordResult) {
if (width == 32)
instResult.dbl = (double)val;
else if (width == 64)
instResult.dbl = val;
else
panic("Unsupported width!");
}
}
/** Records an fp register being set to a value. */
void setFloatRegOperand(const StaticInst *si, int idx, FloatReg val)
{
if (recordResult)
instResult.dbl = (double)val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val,
int width)
{
if (recordResult)
instResult.integer = val;
}
/** Records an fp register being set to an integer value. */
void setFloatRegOperandBits(const StaticInst *si, int idx, uint64_t val)
{
if (recordResult)
instResult.integer = val;
}
/** Records that one of the source registers is ready. */
void markSrcRegReady();
/** Marks a specific register as ready. */
void markSrcRegReady(RegIndex src_idx);
/** Returns if a source register is ready. */
bool isReadySrcRegIdx(int idx) const
{
return this->_readySrcRegIdx[idx];
}
/** Sets this instruction as completed. */
void setCompleted() { status.set(Completed); }
/** Returns whether or not this instruction is completed. */
bool isCompleted() const { return status[Completed]; }
/** Marks the result as ready. */
void setResultReady() { status.set(ResultReady); }
/** Returns whether or not the result is ready. */
bool isResultReady() const { return status[ResultReady]; }
/** Sets this instruction as ready to issue. */
void setCanIssue() { status.set(CanIssue); }
/** Returns whether or not this instruction is ready to issue. */
bool readyToIssue() const { return status[CanIssue]; }
/** Clears this instruction being able to issue. */
void clearCanIssue() { status.reset(CanIssue); }
/** Sets this instruction as issued from the IQ. */
void setIssued() { status.set(Issued); }
/** Returns whether or not this instruction has issued. */
bool isIssued() const { return status[Issued]; }
/** Clears this instruction as being issued. */
void clearIssued() { status.reset(Issued); }
/** Sets this instruction as executed. */
void setExecuted() { status.set(Executed); }
/** Returns whether or not this instruction has executed. */
bool isExecuted() const { return status[Executed]; }
/** Sets this instruction as ready to commit. */
void setCanCommit() { status.set(CanCommit); }
/** Clears this instruction as being ready to commit. */
void clearCanCommit() { status.reset(CanCommit); }
/** Returns whether or not this instruction is ready to commit. */
bool readyToCommit() const { return status[CanCommit]; }
void setAtCommit() { status.set(AtCommit); }
bool isAtCommit() { return status[AtCommit]; }
/** Sets this instruction as committed. */
void setCommitted() { status.set(Committed); }
/** Returns whether or not this instruction is committed. */
bool isCommitted() const { return status[Committed]; }
/** Sets this instruction as squashed. */
void setSquashed() { status.set(Squashed); }
/** Returns whether or not this instruction is squashed. */
bool isSquashed() const { return status[Squashed]; }
//Instruction Queue Entry
//-----------------------
/** Sets this instruction as a entry the IQ. */
void setInIQ() { status.set(IqEntry); }
/** Sets this instruction as a entry the IQ. */
void clearInIQ() { status.reset(IqEntry); }
/** Returns whether or not this instruction has issued. */
bool isInIQ() const { return status[IqEntry]; }
/** Sets this instruction as squashed in the IQ. */
void setSquashedInIQ() { status.set(SquashedInIQ); status.set(Squashed);}
/** Returns whether or not this instruction is squashed in the IQ. */
bool isSquashedInIQ() const { return status[SquashedInIQ]; }
//Load / Store Queue Functions
//-----------------------
/** Sets this instruction as a entry the LSQ. */
void setInLSQ() { status.set(LsqEntry); }
/** Sets this instruction as a entry the LSQ. */
void removeInLSQ() { status.reset(LsqEntry); }
/** Returns whether or not this instruction is in the LSQ. */
bool isInLSQ() const { return status[LsqEntry]; }
/** Sets this instruction as squashed in the LSQ. */
void setSquashedInLSQ() { status.set(SquashedInLSQ);}
/** Returns whether or not this instruction is squashed in the LSQ. */
bool isSquashedInLSQ() const { return status[SquashedInLSQ]; }
//Reorder Buffer Functions
//-----------------------
/** Sets this instruction as a entry the ROB. */
void setInROB() { status.set(RobEntry); }
/** Sets this instruction as a entry the ROB. */
void clearInROB() { status.reset(RobEntry); }
/** Returns whether or not this instruction is in the ROB. */
bool isInROB() const { return status[RobEntry]; }
/** Sets this instruction as squashed in the ROB. */
void setSquashedInROB() { status.set(SquashedInROB); }
/** Returns whether or not this instruction is squashed in the ROB. */
bool isSquashedInROB() const { return status[SquashedInROB]; }
/** Read the PC state of this instruction. */
const TheISA::PCState pcState() const { return pc; }
/** Set the PC state of this instruction. */
const void pcState(const TheISA::PCState &val) { pc = val; }
/** Read the PC of this instruction. */
const Addr instAddr() const { return pc.instAddr(); }
/** Read the PC of the next instruction. */
const Addr nextInstAddr() const { return pc.nextInstAddr(); }
/**Read the micro PC of this instruction. */
const Addr microPC() const { return pc.microPC(); }
bool readPredicate()
{
return predicate;
}
void setPredicate(bool val)
{
predicate = val;
if (traceData) {
traceData->setPredicate(val);
}
}
/** Sets the ASID. */
void setASID(short addr_space_id) { asid = addr_space_id; }
/** Sets the thread id. */
void setTid(ThreadID tid) { threadNumber = tid; }
/** Sets the pointer to the thread state. */
void setThreadState(ImplState *state) { thread = state; }
/** Returns the thread context. */
ThreadContext *tcBase() { return thread->getTC(); }
private:
/** Instruction effective address.
* @todo: Consider if this is necessary or not.
*/
Addr instEffAddr;
/** Whether or not the effective address calculation is completed.
* @todo: Consider if this is necessary or not.
*/
bool eaCalcDone;
/** Is this instruction's memory access uncacheable. */
bool isUncacheable;
/** Has this instruction generated a memory request. */
bool reqMade;
public:
/** Sets the effective address. */
void setEA(Addr &ea) { instEffAddr = ea; eaCalcDone = true; }
/** Returns the effective address. */
const Addr &getEA() const { return instEffAddr; }
/** Returns whether or not the eff. addr. calculation has been completed. */
bool doneEACalc() { return eaCalcDone; }
/** Returns whether or not the eff. addr. source registers are ready. */
bool eaSrcsReady();
/** Whether or not the memory operation is done. */
bool memOpDone;
/** Is this instruction's memory access uncacheable. */
bool uncacheable() { return isUncacheable; }
/** Has this instruction generated a memory request. */
bool hasRequest() { return reqMade; }
public:
/** Load queue index. */
int16_t lqIdx;
/** Store queue index. */
int16_t sqIdx;
/** Iterator pointing to this BaseDynInst in the list of all insts. */
ListIt instListIt;
/** Returns iterator to this instruction in the list of all insts. */
ListIt &getInstListIt() { return instListIt; }
/** Sets iterator for this instruction in the list of all insts. */
void setInstListIt(ListIt _instListIt) { instListIt = _instListIt; }
public:
/** Returns the number of consecutive store conditional failures. */
unsigned readStCondFailures()
{ return thread->storeCondFailures; }
/** Sets the number of consecutive store conditional failures. */
void setStCondFailures(unsigned sc_failures)
{ thread->storeCondFailures = sc_failures; }
};
template<class Impl>
Fault
BaseDynInst<Impl>::readMem(Addr addr, uint8_t *data,
unsigned size, unsigned flags)
{
reqMade = true;
Request *req = NULL;
Request *sreqLow = NULL;
Request *sreqHigh = NULL;
if (reqMade && translationStarted) {
req = savedReq;
sreqLow = savedSreqLow;
sreqHigh = savedSreqHigh;
} else {
req = new Request(asid, addr, size, flags, this->pc.instAddr(),
thread->contextId(), threadNumber);
// Only split the request if the ISA supports unaligned accesses.
if (TheISA::HasUnalignedMemAcc) {
splitRequest(req, sreqLow, sreqHigh);
}
initiateTranslation(req, sreqLow, sreqHigh, NULL, BaseTLB::Read);
}
if (translationCompleted) {
if (fault == NoFault) {
effAddr = req->getVaddr();
effSize = size;
effAddrValid = true;
fault = cpu->read(req, sreqLow, sreqHigh, data, lqIdx);
} else {
// Commit will have to clean up whatever happened. Set this
// instruction as executed.
this->setExecuted();
}
if (fault != NoFault) {
// Return a fixed value to keep simulation deterministic even
// along misspeculated paths.
if (data)
bzero(data, size);
}
}
if (traceData) {
traceData->setAddr(addr);
}
return fault;
}
template<class Impl>
Fault
BaseDynInst<Impl>::writeMem(uint8_t *data, unsigned size,
Addr addr, unsigned flags, uint64_t *res)
{
if (traceData) {
traceData->setAddr(addr);
}
reqMade = true;
Request *req = NULL;
Request *sreqLow = NULL;
Request *sreqHigh = NULL;
if (reqMade && translationStarted) {
req = savedReq;
sreqLow = savedSreqLow;
sreqHigh = savedSreqHigh;
} else {
req = new Request(asid, addr, size, flags, this->pc.instAddr(),
thread->contextId(), threadNumber);
// Only split the request if the ISA supports unaligned accesses.
if (TheISA::HasUnalignedMemAcc) {
splitRequest(req, sreqLow, sreqHigh);
}
initiateTranslation(req, sreqLow, sreqHigh, res, BaseTLB::Write);
}
if (fault == NoFault && translationCompleted) {
effAddr = req->getVaddr();
effSize = size;
effAddrValid = true;
fault = cpu->write(req, sreqLow, sreqHigh, data, sqIdx);
}
return fault;
}
template<class Impl>
inline void
BaseDynInst<Impl>::splitRequest(RequestPtr req, RequestPtr &sreqLow,
RequestPtr &sreqHigh)
{
// Check to see if the request crosses the next level block boundary.
unsigned block_size = cpu->getDcachePort()->peerBlockSize();
Addr addr = req->getVaddr();
Addr split_addr = roundDown(addr + req->getSize() - 1, block_size);
assert(split_addr <= addr || split_addr - addr < block_size);
// Spans two blocks.
if (split_addr > addr) {
req->splitOnVaddr(split_addr, sreqLow, sreqHigh);
}
}
template<class Impl>
inline void
BaseDynInst<Impl>::initiateTranslation(RequestPtr req, RequestPtr sreqLow,
RequestPtr sreqHigh, uint64_t *res,
BaseTLB::Mode mode)
{
translationStarted = true;
if (!TheISA::HasUnalignedMemAcc || sreqLow == NULL) {
WholeTranslationState *state =
new WholeTranslationState(req, NULL, res, mode);
// One translation if the request isn't split.
DataTranslation<BaseDynInst<Impl> > *trans =
new DataTranslation<BaseDynInst<Impl> >(this, state);
cpu->dtb->translateTiming(req, thread->getTC(), trans, mode);
if (!translationCompleted) {
// Save memory requests.
savedReq = state->mainReq;
savedSreqLow = state->sreqLow;
savedSreqHigh = state->sreqHigh;
}
} else {
WholeTranslationState *state =
new WholeTranslationState(req, sreqLow, sreqHigh, NULL, res, mode);
// Two translations when the request is split.
DataTranslation<BaseDynInst<Impl> > *stransLow =
new DataTranslation<BaseDynInst<Impl> >(this, state, 0);
DataTranslation<BaseDynInst<Impl> > *stransHigh =
new DataTranslation<BaseDynInst<Impl> >(this, state, 1);
cpu->dtb->translateTiming(sreqLow, thread->getTC(), stransLow, mode);
cpu->dtb->translateTiming(sreqHigh, thread->getTC(), stransHigh, mode);
if (!translationCompleted) {
// Save memory requests.
savedReq = state->mainReq;
savedSreqLow = state->sreqLow;
savedSreqHigh = state->sreqHigh;
}
}
}
template<class Impl>
inline void
BaseDynInst<Impl>::finishTranslation(WholeTranslationState *state)
{
fault = state->getFault();
if (state->isUncacheable())
isUncacheable = true;
if (fault == NoFault) {
physEffAddr = state->getPaddr();
memReqFlags = state->getFlags();
if (state->mainReq->isCondSwap()) {
assert(state->res);
state->mainReq->setExtraData(*state->res);
}
} else {
state->deleteReqs();
}
delete state;
translationCompleted = true;
}
#endif // __CPU_BASE_DYN_INST_HH__