gem5/src/mem/packet.hh
Nathan Binkert d55b25cde6 Move all of the parameters of the Root SimObject so they are
directly configured by python.  Move stuff from root.(cc|hh) to
core.(cc|hh) since it really belogs there now.
In the process, simplify how ticks are used in the python code.

--HG--
extra : convert_revision : cf82ee1ea20f9343924f30bacc2a38d4edee8df3
2007-03-06 11:13:43 -08:00

524 lines
16 KiB
C++

/*
* Copyright (c) 2006 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Ron Dreslinski
* Steve Reinhardt
* Ali Saidi
*/
/**
* @file
* Declaration of the Packet class.
*/
#ifndef __MEM_PACKET_HH__
#define __MEM_PACKET_HH__
#include <cassert>
#include <list>
#include <bitset>
#include "base/compiler.hh"
#include "base/misc.hh"
#include "mem/request.hh"
#include "sim/host.hh"
#include "sim/core.hh"
struct Packet;
typedef Packet *PacketPtr;
typedef uint8_t* PacketDataPtr;
typedef std::list<PacketPtr> PacketList;
//Coherence Flags
#define NACKED_LINE (1 << 0)
#define SATISFIED (1 << 1)
#define SHARED_LINE (1 << 2)
#define CACHE_LINE_FILL (1 << 3)
#define COMPRESSED (1 << 4)
#define NO_ALLOCATE (1 << 5)
#define SNOOP_COMMIT (1 << 6)
class MemCmd
{
public:
/** List of all commands associated with a packet. */
enum Command
{
InvalidCmd,
ReadReq,
WriteReq,
WriteReqNoAck,
ReadResp,
WriteResp,
Writeback,
SoftPFReq,
HardPFReq,
SoftPFResp,
HardPFResp,
InvalidateReq,
WriteInvalidateReq,
WriteInvalidateResp,
UpgradeReq,
ReadExReq,
ReadExResp,
SwapReq,
SwapResp,
NUM_MEM_CMDS
};
private:
/** List of command attributes. */
enum Attribute
{
IsRead,
IsWrite,
IsPrefetch,
IsInvalidate,
IsRequest,
IsResponse,
NeedsResponse,
IsSWPrefetch,
IsHWPrefetch,
IsUpgrade,
HasData,
IsReadWrite,
NUM_COMMAND_ATTRIBUTES
};
/** Structure that defines attributes and other data associated
* with a Command. */
struct CommandInfo {
/** Set of attribute flags. */
const std::bitset<NUM_COMMAND_ATTRIBUTES> attributes;
/** Corresponding response for requests; InvalidCmd if no
* response is applicable. */
const Command response;
/** String representation (for printing) */
const std::string str;
};
/** Array to map Command enum to associated info. */
static const CommandInfo commandInfo[];
private:
Command cmd;
bool testCmdAttrib(MemCmd::Attribute attrib) const {
return commandInfo[cmd].attributes[attrib] != 0;
}
public:
bool isRead() const { return testCmdAttrib(IsRead); }
bool isWrite() const { return testCmdAttrib(IsWrite); }
bool isRequest() const { return testCmdAttrib(IsRequest); }
bool isResponse() const { return testCmdAttrib(IsResponse); }
bool needsResponse() const { return testCmdAttrib(NeedsResponse); }
bool isInvalidate() const { return testCmdAttrib(IsInvalidate); }
bool hasData() const { return testCmdAttrib(HasData); }
bool isReadWrite() const { return testCmdAttrib(IsReadWrite); }
const Command responseCommand() const {
return commandInfo[cmd].response;
}
/** Return the string to a cmd given by idx. */
const std::string &toString() const {
return commandInfo[cmd].str;
}
int toInt() const { return (int)cmd; }
MemCmd(Command _cmd)
: cmd(_cmd)
{ }
MemCmd(int _cmd)
: cmd((Command)_cmd)
{ }
MemCmd()
: cmd(InvalidCmd)
{ }
bool operator==(MemCmd c2) { return (cmd == c2.cmd); }
bool operator!=(MemCmd c2) { return (cmd != c2.cmd); }
friend class Packet;
};
/**
* A Packet is used to encapsulate a transfer between two objects in
* the memory system (e.g., the L1 and L2 cache). (In contrast, a
* single Request travels all the way from the requester to the
* ultimate destination and back, possibly being conveyed by several
* different Packets along the way.)
*/
class Packet
{
public:
typedef MemCmd::Command Command;
/** Temporary FLAGS field until cache gets working, this should be in coherence/sender state. */
uint64_t flags;
private:
/** A pointer to the data being transfered. It can be differnt
* sizes at each level of the heirarchy so it belongs in the
* packet, not request. This may or may not be populated when a
* responder recieves the packet. If not populated it memory
* should be allocated.
*/
PacketDataPtr data;
/** Is the data pointer set to a value that shouldn't be freed
* when the packet is destroyed? */
bool staticData;
/** The data pointer points to a value that should be freed when
* the packet is destroyed. */
bool dynamicData;
/** the data pointer points to an array (thus delete [] ) needs to
* be called on it rather than simply delete.*/
bool arrayData;
/** The address of the request. This address could be virtual or
* physical, depending on the system configuration. */
Addr addr;
/** The size of the request or transfer. */
int size;
/** Device address (e.g., bus ID) of the source of the
* transaction. The source is not responsible for setting this
* field; it is set implicitly by the interconnect when the
* packet is first sent. */
short src;
/** Device address (e.g., bus ID) of the destination of the
* transaction. The special value Broadcast indicates that the
* packet should be routed based on its address. This field is
* initialized in the constructor and is thus always valid
* (unlike * addr, size, and src). */
short dest;
/** Are the 'addr' and 'size' fields valid? */
bool addrSizeValid;
/** Is the 'src' field valid? */
bool srcValid;
public:
/** Used to calculate latencies for each packet.*/
Tick time;
/** The time at which the packet will be fully transmitted */
Tick finishTime;
/** The time at which the first chunk of the packet will be transmitted */
Tick firstWordTime;
/** The special destination address indicating that the packet
* should be routed based on its address. */
static const short Broadcast = -1;
/** A pointer to the original request. */
RequestPtr req;
/** A virtual base opaque structure used to hold coherence-related
* state. A specific subclass would be derived from this to
* carry state specific to a particular coherence protocol. */
class CoherenceState {
public:
virtual ~CoherenceState() {}
};
/** This packet's coherence state. Caches should use
* dynamic_cast<> to cast to the state appropriate for the
* system's coherence protocol. */
CoherenceState *coherence;
/** A virtual base opaque structure used to hold state associated
* with the packet but specific to the sending device (e.g., an
* MSHR). A pointer to this state is returned in the packet's
* response so that the sender can quickly look up the state
* needed to process it. A specific subclass would be derived
* from this to carry state specific to a particular sending
* device. */
class SenderState {
public:
virtual ~SenderState() {}
};
/** This packet's sender state. Devices should use dynamic_cast<>
* to cast to the state appropriate to the sender. */
SenderState *senderState;
public:
/** The command field of the packet. */
MemCmd cmd;
/** Return the string name of the cmd field (for debugging and
* tracing). */
const std::string &cmdString() const { return cmd.toString(); }
/** Return the index of this command. */
inline int cmdToIndex() const { return cmd.toInt(); }
public:
bool isRead() const { return cmd.isRead(); }
bool isWrite() const { return cmd.isWrite(); }
bool isRequest() const { return cmd.isRequest(); }
bool isResponse() const { return cmd.isResponse(); }
bool needsResponse() const { return cmd.needsResponse(); }
bool isInvalidate() const { return cmd.isInvalidate(); }
bool hasData() const { return cmd.hasData(); }
bool isReadWrite() const { return cmd.isReadWrite(); }
bool isCacheFill() const { return (flags & CACHE_LINE_FILL) != 0; }
bool isNoAllocate() const { return (flags & NO_ALLOCATE) != 0; }
bool isCompressed() const { return (flags & COMPRESSED) != 0; }
bool nic_pkt() { panic("Unimplemented"); M5_DUMMY_RETURN }
/** Possible results of a packet's request. */
enum Result
{
Success,
BadAddress,
Nacked,
Unknown
};
/** The result of this packet's request. */
Result result;
/** Accessor function that returns the source index of the packet. */
short getSrc() const { assert(srcValid); return src; }
void setSrc(short _src) { src = _src; srcValid = true; }
/** Accessor function that returns the destination index of
the packet. */
short getDest() const { return dest; }
void setDest(short _dest) { dest = _dest; }
Addr getAddr() const { assert(addrSizeValid); return addr; }
int getSize() const { assert(addrSizeValid); return size; }
Addr getOffset(int blkSize) const { return addr & (Addr)(blkSize - 1); }
void addrOverride(Addr newAddr) { assert(addrSizeValid); addr = newAddr; }
void cmdOverride(MemCmd newCmd) { cmd = newCmd; }
/** Constructor. Note that a Request object must be constructed
* first, but the Requests's physical address and size fields
* need not be valid. The command and destination addresses
* must be supplied. */
Packet(Request *_req, MemCmd _cmd, short _dest)
: data(NULL), staticData(false), dynamicData(false), arrayData(false),
addr(_req->paddr), size(_req->size), dest(_dest),
addrSizeValid(_req->validPaddr),
srcValid(false),
req(_req), coherence(NULL), senderState(NULL), cmd(_cmd),
result(Unknown)
{
flags = 0;
time = curTick;
}
/** Alternate constructor if you are trying to create a packet with
* a request that is for a whole block, not the address from the req.
* this allows for overriding the size/addr of the req.*/
Packet(Request *_req, MemCmd _cmd, short _dest, int _blkSize)
: data(NULL), staticData(false), dynamicData(false), arrayData(false),
addr(_req->paddr & ~(_blkSize - 1)), size(_blkSize),
dest(_dest),
addrSizeValid(_req->validPaddr), srcValid(false),
req(_req), coherence(NULL), senderState(NULL), cmd(_cmd),
result(Unknown)
{
flags = 0;
time = curTick;
}
/** Destructor. */
~Packet()
{ if (staticData || dynamicData) deleteData(); }
/** Reinitialize packet address and size from the associated
* Request object, and reset other fields that may have been
* modified by a previous transaction. Typically called when a
* statically allocated Request/Packet pair is reused for
* multiple transactions. */
void reinitFromRequest() {
assert(req->validPaddr);
flags = 0;
addr = req->paddr;
size = req->size;
time = req->time;
addrSizeValid = true;
result = Unknown;
if (dynamicData) {
deleteData();
dynamicData = false;
arrayData = false;
}
}
/** Take a request packet and modify it in place to be suitable
* for returning as a response to that request. Used for timing
* accesses only. For atomic and functional accesses, the
* request packet is always implicitly passed back *without*
* modifying the destination fields, so this function
* should not be called. */
void makeTimingResponse() {
assert(needsResponse());
assert(isRequest());
cmd = cmd.responseCommand();
dest = src;
srcValid = false;
}
/**
* Take a request packet and modify it in place to be suitable for
* returning as a response to that request.
*/
void makeAtomicResponse()
{
assert(needsResponse());
assert(isRequest());
cmd = cmd.responseCommand();
}
/**
* Take a request packet that has been returned as NACKED and
* modify it so that it can be sent out again. Only packets that
* need a response can be NACKED, so verify that that is true.
*/
void
reinitNacked()
{
assert(needsResponse() && result == Nacked);
dest = Broadcast;
result = Unknown;
}
/**
* Set the data pointer to the following value that should not be
* freed.
*/
template <typename T>
void
dataStatic(T *p)
{
if(dynamicData)
dynamicData = false;
data = (PacketDataPtr)p;
staticData = true;
}
/**
* Set the data pointer to a value that should have delete []
* called on it.
*/
template <typename T>
void
dataDynamicArray(T *p)
{
assert(!staticData && !dynamicData);
data = (PacketDataPtr)p;
dynamicData = true;
arrayData = true;
}
/**
* set the data pointer to a value that should have delete called
* on it.
*/
template <typename T>
void
dataDynamic(T *p)
{
assert(!staticData && !dynamicData);
data = (PacketDataPtr)p;
dynamicData = true;
arrayData = false;
}
/** get a pointer to the data ptr. */
template <typename T>
T*
getPtr()
{
assert(staticData || dynamicData);
return (T*)data;
}
/** return the value of what is pointed to in the packet. */
template <typename T>
T get();
/** set the value in the data pointer to v. */
template <typename T>
void set(T v);
/**
* delete the data pointed to in the data pointer. Ok to call to
* matter how data was allocted.
*/
void deleteData();
/** If there isn't data in the packet, allocate some. */
void allocate();
/** Do the packet modify the same addresses. */
bool intersect(PacketPtr p);
};
/** This function given a functional packet and a timing packet either satisfies
* the timing packet, or updates the timing packet to reflect the updated state
* in the timing packet. It returns if the functional packet should continue to
* traverse the memory hierarchy or not.
*/
bool fixPacket(PacketPtr func, PacketPtr timing);
/** This function is a wrapper for the fixPacket field that toggles the hasData bit
* it is used when a response is waiting in the caches, but hasn't been marked as a
* response yet (so the fixPacket needs to get the correct value for the hasData)
*/
bool fixDelayedResponsePacket(PacketPtr func, PacketPtr timing);
std::ostream & operator<<(std::ostream &o, const Packet &p);
#endif //__MEM_PACKET_HH