gem5/src/cpu/trace/trace_cpu.cc
Radhika Jagtap 3080bbcc36 cpu: Create record type enum for elastic traces
This patch replaces the booleans that specified the elastic trace record
type with an enum type. The source of change is the proto message for
elastic trace where the enum is introduced. The struct definitions in the
elastic trace probe listener as well as the Trace CPU replace the boleans
with the proto message enum.

The patch does not impact functionality, but traces are not compatible with
previous version. This is preparation for adding new types of records in
subsequent patches.
2015-12-07 16:42:16 -06:00

1457 lines
50 KiB
C++

/*
* Copyright (c) 2013 - 2015 ARM Limited
* All rights reserved
*
* The license below extends only to copyright in the software and shall
* not be construed as granting a license to any other intellectual
* property including but not limited to intellectual property relating
* to a hardware implementation of the functionality of the software
* licensed hereunder. You may use the software subject to the license
* terms below provided that you ensure that this notice is replicated
* unmodified and in its entirety in all distributions of the software,
* modified or unmodified, in source code or in binary form.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Radhika Jagtap
* Andreas Hansson
* Thomas Grass
*/
#include "cpu/trace/trace_cpu.hh"
#include "sim/sim_exit.hh"
// Declare and initialize the static counter for number of trace CPUs.
int TraceCPU::numTraceCPUs = 0;
TraceCPU::TraceCPU(TraceCPUParams *params)
: BaseCPU(params),
icachePort(this),
dcachePort(this),
instMasterID(params->system->getMasterId(name() + ".inst")),
dataMasterID(params->system->getMasterId(name() + ".data")),
instTraceFile(params->instTraceFile),
dataTraceFile(params->dataTraceFile),
icacheGen(*this, ".iside", icachePort, instMasterID, instTraceFile),
dcacheGen(*this, ".dside", dcachePort, dataMasterID, dataTraceFile,
params->sizeROB, params->sizeStoreBuffer,
params->sizeLoadBuffer),
icacheNextEvent(this),
dcacheNextEvent(this),
oneTraceComplete(false),
firstFetchTick(0),
execCompleteEvent(nullptr)
{
// Increment static counter for number of Trace CPUs.
++TraceCPU::numTraceCPUs;
// Check that the python parameters for sizes of ROB, store buffer and load
// buffer do not overflow the corresponding C++ variables.
fatal_if(params->sizeROB > UINT16_MAX, "ROB size set to %d exceeds the "
"max. value of %d.\n", params->sizeROB, UINT16_MAX);
fatal_if(params->sizeStoreBuffer > UINT16_MAX, "ROB size set to %d "
"exceeds the max. value of %d.\n", params->sizeROB,
UINT16_MAX);
fatal_if(params->sizeLoadBuffer > UINT16_MAX, "Load buffer size set to"
" %d exceeds the max. value of %d.\n",
params->sizeLoadBuffer, UINT16_MAX);
}
TraceCPU::~TraceCPU()
{
}
TraceCPU*
TraceCPUParams::create()
{
return new TraceCPU(this);
}
void
TraceCPU::takeOverFrom(BaseCPU *oldCPU)
{
// Unbind the ports of the old CPU and bind the ports of the TraceCPU.
assert(!getInstPort().isConnected());
assert(oldCPU->getInstPort().isConnected());
BaseSlavePort &inst_peer_port = oldCPU->getInstPort().getSlavePort();
oldCPU->getInstPort().unbind();
getInstPort().bind(inst_peer_port);
assert(!getDataPort().isConnected());
assert(oldCPU->getDataPort().isConnected());
BaseSlavePort &data_peer_port = oldCPU->getDataPort().getSlavePort();
oldCPU->getDataPort().unbind();
getDataPort().bind(data_peer_port);
}
void
TraceCPU::init()
{
DPRINTF(TraceCPUInst, "Instruction fetch request trace file is \"%s\"."
"\n", instTraceFile);
DPRINTF(TraceCPUData, "Data memory request trace file is \"%s\".\n",
dataTraceFile);
BaseCPU::init();
// Get the send tick of the first instruction read request and schedule
// icacheNextEvent at that tick.
Tick first_icache_tick = icacheGen.init();
schedule(icacheNextEvent, first_icache_tick);
// Get the send tick of the first data read/write request and schedule
// dcacheNextEvent at that tick.
Tick first_dcache_tick = dcacheGen.init();
schedule(dcacheNextEvent, first_dcache_tick);
// The static counter for number of Trace CPUs is correctly set at this
// point so create an event and pass it.
execCompleteEvent = new CountedExitEvent("end of all traces reached.",
numTraceCPUs);
// Save the first fetch request tick to dump it as tickOffset
firstFetchTick = first_icache_tick;
}
void
TraceCPU::schedIcacheNext()
{
DPRINTF(TraceCPUInst, "IcacheGen event.\n");
// Try to send the current packet or a retry packet if there is one
bool sched_next = icacheGen.tryNext();
// If packet sent successfully, schedule next event
if (sched_next) {
DPRINTF(TraceCPUInst, "Scheduling next icacheGen event "
"at %d.\n", curTick() + icacheGen.tickDelta());
schedule(icacheNextEvent, curTick() + icacheGen.tickDelta());
++numSchedIcacheEvent;
} else {
// check if traceComplete. If not, do nothing because sending failed
// and next event will be scheduled via RecvRetry()
if (icacheGen.isTraceComplete()) {
// If this is the first trace to complete, set the variable. If it
// is already set then both traces are complete to exit sim.
checkAndSchedExitEvent();
}
}
return;
}
void
TraceCPU::schedDcacheNext()
{
DPRINTF(TraceCPUData, "DcacheGen event.\n");
dcacheGen.execute();
if (dcacheGen.isExecComplete()) {
checkAndSchedExitEvent();
}
}
void
TraceCPU::checkAndSchedExitEvent()
{
if (!oneTraceComplete) {
oneTraceComplete = true;
} else {
// Schedule event to indicate execution is complete as both
// instruction and data access traces have been played back.
inform("%s: Execution complete.\n", name());
// Record stats which are computed at the end of simulation
tickOffset = firstFetchTick;
numCycles = (clockEdge() - firstFetchTick) / clockPeriod();
numOps = dcacheGen.getMicroOpCount();
schedule(*execCompleteEvent, curTick());
}
}
void
TraceCPU::regStats()
{
BaseCPU::regStats();
numSchedDcacheEvent
.name(name() + ".numSchedDcacheEvent")
.desc("Number of events scheduled to trigger data request generator")
;
numSchedIcacheEvent
.name(name() + ".numSchedIcacheEvent")
.desc("Number of events scheduled to trigger instruction request generator")
;
numOps
.name(name() + ".numOps")
.desc("Number of micro-ops simulated by the Trace CPU")
;
cpi
.name(name() + ".cpi")
.desc("Cycles per micro-op used as a proxy for CPI")
.precision(6)
;
cpi = numCycles/numOps;
tickOffset
.name(name() + ".tickOffset")
.desc("The first execution tick for the root node of elastic traces")
;
icacheGen.regStats();
dcacheGen.regStats();
}
void
TraceCPU::ElasticDataGen::regStats()
{
using namespace Stats;
maxDependents
.name(name() + ".maxDependents")
.desc("Max number of dependents observed on a node")
;
maxReadyListSize
.name(name() + ".maxReadyListSize")
.desc("Max size of the ready list observed")
;
numSendAttempted
.name(name() + ".numSendAttempted")
.desc("Number of first attempts to send a request")
;
numSendSucceeded
.name(name() + ".numSendSucceeded")
.desc("Number of successful first attempts")
;
numSendFailed
.name(name() + ".numSendFailed")
.desc("Number of failed first attempts")
;
numRetrySucceeded
.name(name() + ".numRetrySucceeded")
.desc("Number of successful retries")
;
numSplitReqs
.name(name() + ".numSplitReqs")
.desc("Number of split requests")
;
numSOLoads
.name(name() + ".numSOLoads")
.desc("Number of strictly ordered loads")
;
numSOStores
.name(name() + ".numSOStores")
.desc("Number of strictly ordered stores")
;
dataLastTick
.name(name() + ".dataLastTick")
.desc("Last tick simulated from the elastic data trace")
;
}
Tick
TraceCPU::ElasticDataGen::init()
{
DPRINTF(TraceCPUData, "Initializing data memory request generator "
"DcacheGen: elastic issue with retry.\n");
if (!readNextWindow())
panic("Trace has %d elements. It must have at least %d elements.\n",
depGraph.size(), 2 * windowSize);
DPRINTF(TraceCPUData, "After 1st read, depGraph size:%d.\n",
depGraph.size());
if (!readNextWindow())
panic("Trace has %d elements. It must have at least %d elements.\n",
depGraph.size(), 2 * windowSize);
DPRINTF(TraceCPUData, "After 2st read, depGraph size:%d.\n",
depGraph.size());
// Print readyList
if (DTRACE(TraceCPUData)) {
printReadyList();
}
auto free_itr = readyList.begin();
DPRINTF(TraceCPUData, "Execute tick of the first dependency free node %lli"
" is %d.\n", free_itr->seqNum, free_itr->execTick);
// Return the execute tick of the earliest ready node so that an event
// can be scheduled to call execute()
return (free_itr->execTick);
}
void
TraceCPU::ElasticDataGen::exit()
{
trace.reset();
}
bool
TraceCPU::ElasticDataGen::readNextWindow()
{
// Read and add next window
DPRINTF(TraceCPUData, "Reading next window from file.\n");
if (traceComplete) {
// We are at the end of the file, thus we have no more records.
// Return false.
return false;
}
DPRINTF(TraceCPUData, "Start read: Size of depGraph is %d.\n",
depGraph.size());
uint32_t num_read = 0;
while (num_read != windowSize) {
// Create a new graph node
GraphNode* new_node = new GraphNode;
// Read the next line to get the next record. If that fails then end of
// trace has been reached and traceComplete needs to be set in addition
// to returning false.
if (!trace.read(new_node)) {
DPRINTF(TraceCPUData, "\tTrace complete!\n");
traceComplete = true;
return false;
}
// Annotate the ROB dependencies of the new node onto the parent nodes.
addDepsOnParent(new_node, new_node->robDep, new_node->numRobDep);
// Annotate the register dependencies of the new node onto the parent
// nodes.
addDepsOnParent(new_node, new_node->regDep, new_node->numRegDep);
num_read++;
// Add to map
depGraph[new_node->seqNum] = new_node;
if (new_node->numRobDep == 0 && new_node->numRegDep == 0) {
// Source dependencies are already complete, check if resources
// are available and issue. The execution time is approximated
// to current time plus the computational delay.
checkAndIssue(new_node);
}
}
DPRINTF(TraceCPUData, "End read: Size of depGraph is %d.\n",
depGraph.size());
return true;
}
template<typename T> void
TraceCPU::ElasticDataGen::addDepsOnParent(GraphNode *new_node,
T& dep_array, uint8_t& num_dep)
{
for (auto& a_dep : dep_array) {
// The convention is to set the dependencies starting with the first
// index in the ROB and register dependency arrays. Thus, when we reach
// a dependency equal to the initialisation value of zero, we know have
// iterated over all dependencies and can break.
if (a_dep == 0)
break;
// We look up the valid dependency, i.e. the parent of this node
auto parent_itr = depGraph.find(a_dep);
if (parent_itr != depGraph.end()) {
// If the parent is found, it is yet to be executed. Append a
// pointer to the new node to the dependents list of the parent
// node.
parent_itr->second->dependents.push_back(new_node);
auto num_depts = parent_itr->second->dependents.size();
maxDependents = std::max<double>(num_depts, maxDependents.value());
} else {
// The dependency is not found in the graph. So consider
// the execution of the parent is complete, i.e. remove this
// dependency.
a_dep = 0;
num_dep--;
}
}
}
void
TraceCPU::ElasticDataGen::execute()
{
DPRINTF(TraceCPUData, "Execute start occupancy:\n");
DPRINTFR(TraceCPUData, "\tdepGraph = %d, readyList = %d, "
"depFreeQueue = %d ,", depGraph.size(), readyList.size(),
depFreeQueue.size());
hwResource.printOccupancy();
// Read next window to make sure that dependents of all dep-free nodes
// are in the depGraph
if (nextRead) {
readNextWindow();
nextRead = false;
}
// First attempt to issue the pending dependency-free nodes held
// in depFreeQueue. If resources have become available for a node,
// then issue it, i.e. add the node to readyList.
while (!depFreeQueue.empty()) {
if (checkAndIssue(depFreeQueue.front(), false)) {
DPRINTF(TraceCPUData, "Removing from depFreeQueue: seq. num "
"%lli.\n", (depFreeQueue.front())->seqNum);
depFreeQueue.pop();
} else {
break;
}
}
// Proceed to execute from readyList
auto graph_itr = depGraph.begin();
auto free_itr = readyList.begin();
// Iterate through readyList until the next free node has its execute
// tick later than curTick or the end of readyList is reached
while (free_itr->execTick <= curTick() && free_itr != readyList.end()) {
// Get pointer to the node to be executed
graph_itr = depGraph.find(free_itr->seqNum);
assert(graph_itr != depGraph.end());
GraphNode* node_ptr = graph_itr->second;
// If there is a retryPkt send that else execute the load
if (retryPkt) {
// The retryPkt must be the request that was created by the
// first node in the readyList.
if (retryPkt->req->getReqInstSeqNum() != node_ptr->seqNum) {
panic("Retry packet's seqence number does not match "
"the first node in the readyList.\n");
}
if (port.sendTimingReq(retryPkt)) {
++numRetrySucceeded;
retryPkt = nullptr;
}
} else if (node_ptr->isLoad() || node_ptr->isStore()) {
// If there is no retryPkt, attempt to send a memory request in
// case of a load or store node. If the send fails, executeMemReq()
// returns a packet pointer, which we save in retryPkt. In case of
// a comp node we don't do anything and simply continue as if the
// execution of the comp node succedded.
retryPkt = executeMemReq(node_ptr);
}
// If the retryPkt or a new load/store node failed, we exit from here
// as a retry from cache will bring the control to execute(). The
// first node in readyList then, will be the failed node.
if (retryPkt) {
break;
}
// Proceed to remove dependencies for the successfully executed node.
// If it is a load which is not strictly ordered and we sent a
// request for it successfully, we do not yet mark any register
// dependencies complete. But as per dependency modelling we need
// to mark ROB dependencies of load and non load/store nodes which
// are based on successful sending of the load as complete.
if (node_ptr->isLoad() && !node_ptr->isStrictlyOrdered()) {
// If execute succeeded mark its dependents as complete
DPRINTF(TraceCPUData, "Node seq. num %lli sent. Waking up "
"dependents..\n", node_ptr->seqNum);
auto child_itr = (node_ptr->dependents).begin();
while (child_itr != (node_ptr->dependents).end()) {
// ROB dependency of a store on a load must not be removed
// after load is sent but after response is received
if (!(*child_itr)->isStore() &&
(*child_itr)->removeRobDep(node_ptr->seqNum)) {
// Check if the child node has become dependency free
if ((*child_itr)->numRobDep == 0 &&
(*child_itr)->numRegDep == 0) {
// Source dependencies are complete, check if
// resources are available and issue
checkAndIssue(*child_itr);
}
// Remove this child for the sent load and point to new
// location of the element following the erased element
child_itr = node_ptr->dependents.erase(child_itr);
} else {
// This child is not dependency-free, point to the next
// child
child_itr++;
}
}
} else {
// If it is a strictly ordered load mark its dependents as complete
// as we do not send a request for this case. If it is a store or a
// comp node we also mark all its dependents complete.
DPRINTF(TraceCPUData, "Node seq. num %lli done. Waking"
" up dependents..\n", node_ptr->seqNum);
for (auto child : node_ptr->dependents) {
// If the child node is dependency free removeDepOnInst()
// returns true.
if (child->removeDepOnInst(node_ptr->seqNum)) {
// Source dependencies are complete, check if resources
// are available and issue
checkAndIssue(child);
}
}
}
// After executing the node, remove from readyList and delete node.
readyList.erase(free_itr);
// If it is a cacheable load which was sent, don't delete
// just yet. Delete it in completeMemAccess() after the
// response is received. If it is an strictly ordered
// load, it was not sent and all dependencies were simply
// marked complete. Thus it is safe to delete it. For
// stores and non load/store nodes all dependencies were
// marked complete so it is safe to delete it.
if (!node_ptr->isLoad() || node_ptr->isStrictlyOrdered()) {
// Release all resources occupied by the completed node
hwResource.release(node_ptr);
// clear the dynamically allocated set of dependents
(node_ptr->dependents).clear();
// delete node
delete node_ptr;
// remove from graph
depGraph.erase(graph_itr);
}
// Point to first node to continue to next iteration of while loop
free_itr = readyList.begin();
} // end of while loop
// Print readyList, sizes of queues and resource status after updating
if (DTRACE(TraceCPUData)) {
printReadyList();
DPRINTF(TraceCPUData, "Execute end occupancy:\n");
DPRINTFR(TraceCPUData, "\tdepGraph = %d, readyList = %d, "
"depFreeQueue = %d ,", depGraph.size(), readyList.size(),
depFreeQueue.size());
hwResource.printOccupancy();
}
if (retryPkt) {
DPRINTF(TraceCPUData, "Not scheduling an event as expecting a retry"
"event from the cache for seq. num %lli.\n",
retryPkt->req->getReqInstSeqNum());
return;
}
// If the size of the dependency graph is less than the dependency window
// then read from the trace file to populate the graph next time we are in
// execute.
if (depGraph.size() < windowSize && !traceComplete)
nextRead = true;
// If cache is not blocked, schedule an event for the first execTick in
// readyList else retry from cache will schedule the event. If the ready
// list is empty then check if the next pending node has resources
// available to issue. If yes, then schedule an event for the next cycle.
if (!readyList.empty()) {
Tick next_event_tick = std::max(readyList.begin()->execTick,
curTick());
DPRINTF(TraceCPUData, "Attempting to schedule @%lli.\n",
next_event_tick);
owner.schedDcacheNextEvent(next_event_tick);
} else if (readyList.empty() && !depFreeQueue.empty() &&
hwResource.isAvailable(depFreeQueue.front())) {
DPRINTF(TraceCPUData, "Attempting to schedule @%lli.\n",
owner.clockEdge(Cycles(1)));
owner.schedDcacheNextEvent(owner.clockEdge(Cycles(1)));
}
// If trace is completely read, readyList is empty and depGraph is empty,
// set execComplete to true
if (depGraph.empty() && readyList.empty() && traceComplete &&
!hwResource.awaitingResponse()) {
DPRINTF(TraceCPUData, "\tExecution Complete!\n");
execComplete = true;
dataLastTick = curTick();
}
}
PacketPtr
TraceCPU::ElasticDataGen::executeMemReq(GraphNode* node_ptr)
{
DPRINTF(TraceCPUData, "Executing memory request %lli (addr %d, pc %#x, "
"size %d, flags %d).\n", node_ptr->seqNum, node_ptr->addr,
node_ptr->pc, node_ptr->size, node_ptr->flags);
// If the request is strictly ordered, do not send it. Just return nullptr
// as if it was succesfully sent.
if (node_ptr->isStrictlyOrdered()) {
node_ptr->isLoad() ? ++numSOLoads : ++numSOStores;
DPRINTF(TraceCPUData, "Skipping strictly ordered request %lli.\n",
node_ptr->seqNum);
return nullptr;
}
// Check if the request spans two cache lines as this condition triggers
// an assert fail in the L1 cache. If it does then truncate the size to
// access only until the end of that line and ignore the remainder. The
// stat counting this is useful to keep a check on how frequently this
// happens. If required the code could be revised to mimick splitting such
// a request into two.
unsigned blk_size = owner.cacheLineSize();
Addr blk_offset = (node_ptr->addr & (Addr)(blk_size - 1));
if (!(blk_offset + node_ptr->size <= blk_size)) {
node_ptr->size = blk_size - blk_offset;
++numSplitReqs;
}
// Create a request and the packet containing request
Request* req = new Request(node_ptr->addr, node_ptr->size, node_ptr->flags,
masterID, node_ptr->seqNum,
ContextID(0), ThreadID(0));
req->setPC(node_ptr->pc);
PacketPtr pkt;
uint8_t* pkt_data = new uint8_t[req->getSize()];
if (node_ptr->isLoad()) {
pkt = Packet::createRead(req);
} else {
pkt = Packet::createWrite(req);
memset(pkt_data, 0xA, req->getSize());
}
pkt->dataDynamic(pkt_data);
// Call MasterPort method to send a timing request for this packet
bool success = port.sendTimingReq(pkt);
++numSendAttempted;
if (!success) {
// If it fails, return the packet to retry when a retry is signalled by
// the cache
++numSendFailed;
DPRINTF(TraceCPUData, "Send failed. Saving packet for retry.\n");
return pkt;
} else {
// It is succeeds, return nullptr
++numSendSucceeded;
return nullptr;
}
}
bool
TraceCPU::ElasticDataGen::checkAndIssue(const GraphNode* node_ptr, bool first)
{
// Assert the node is dependency-free
assert(node_ptr->numRobDep == 0 && node_ptr->numRegDep == 0);
// If this is the first attempt, print a debug message to indicate this.
if (first) {
DPRINTFR(TraceCPUData, "\t\tseq. num %lli(%s) with rob num %lli is now"
" dependency free.\n", node_ptr->seqNum, node_ptr->typeToStr(),
node_ptr->robNum);
}
// Check if resources are available to issue the specific node
if (hwResource.isAvailable(node_ptr)) {
// If resources are free only then add to readyList
DPRINTFR(TraceCPUData, "\t\tResources available for seq. num %lli. Adding"
" to readyList, occupying resources.\n", node_ptr->seqNum);
// Compute the execute tick by adding the compute delay for the node
// and add the ready node to the ready list
addToSortedReadyList(node_ptr->seqNum,
owner.clockEdge() + node_ptr->compDelay);
// Account for the resources taken up by this issued node.
hwResource.occupy(node_ptr);
return true;
} else {
if (first) {
// Although dependencies are complete, resources are not available.
DPRINTFR(TraceCPUData, "\t\tResources unavailable for seq. num %lli."
" Adding to depFreeQueue.\n", node_ptr->seqNum);
depFreeQueue.push(node_ptr);
} else {
DPRINTFR(TraceCPUData, "\t\tResources unavailable for seq. num %lli. "
"Still pending issue.\n", node_ptr->seqNum);
}
return false;
}
}
void
TraceCPU::ElasticDataGen::completeMemAccess(PacketPtr pkt)
{
// Release the resources for this completed node.
if (pkt->isWrite()) {
// Consider store complete.
hwResource.releaseStoreBuffer();
// If it is a store response then do nothing since we do not model
// dependencies on store completion in the trace. But if we were
// blocking execution due to store buffer fullness, we need to schedule
// an event and attempt to progress.
} else {
// If it is a load response then release the dependents waiting on it.
// Get pointer to the completed load
auto graph_itr = depGraph.find(pkt->req->getReqInstSeqNum());
assert(graph_itr != depGraph.end());
GraphNode* node_ptr = graph_itr->second;
// Release resources occupied by the load
hwResource.release(node_ptr);
DPRINTF(TraceCPUData, "Load seq. num %lli response received. Waking up"
" dependents..\n", node_ptr->seqNum);
for (auto child : node_ptr->dependents) {
if (child->removeDepOnInst(node_ptr->seqNum)) {
checkAndIssue(child);
}
}
// clear the dynamically allocated set of dependents
(node_ptr->dependents).clear();
// delete node
delete node_ptr;
// remove from graph
depGraph.erase(graph_itr);
}
if (DTRACE(TraceCPUData)) {
printReadyList();
}
// If the size of the dependency graph is less than the dependency window
// then read from the trace file to populate the graph next time we are in
// execute.
if (depGraph.size() < windowSize && !traceComplete)
nextRead = true;
// If not waiting for retry, attempt to schedule next event
if (!retryPkt) {
// We might have new dep-free nodes in the list which will have execute
// tick greater than or equal to curTick. But a new dep-free node might
// have its execute tick earlier. Therefore, attempt to reschedule. It
// could happen that the readyList is empty and we got here via a
// last remaining response. So, either the trace is complete or there
// are pending nodes in the depFreeQueue. The checking is done in the
// execute() control flow, so schedule an event to go via that flow.
Tick next_event_tick = readyList.empty() ? owner.clockEdge(Cycles(1)) :
std::max(readyList.begin()->execTick, owner.clockEdge(Cycles(1)));
DPRINTF(TraceCPUData, "Attempting to schedule @%lli.\n",
next_event_tick);
owner.schedDcacheNextEvent(next_event_tick);
}
}
void
TraceCPU::ElasticDataGen::addToSortedReadyList(NodeSeqNum seq_num,
Tick exec_tick)
{
ReadyNode ready_node;
ready_node.seqNum = seq_num;
ready_node.execTick = exec_tick;
// Iterator to readyList
auto itr = readyList.begin();
// If the readyList is empty, simply insert the new node at the beginning
// and return
if (itr == readyList.end()) {
readyList.insert(itr, ready_node);
maxReadyListSize = std::max<double>(readyList.size(),
maxReadyListSize.value());
return;
}
// If the new node has its execution tick equal to the first node in the
// list then go to the next node. If the first node in the list failed
// to execute, its position as the first is thus maintained.
if (retryPkt)
if (retryPkt->req->getReqInstSeqNum() == itr->seqNum)
itr++;
// Increment the iterator and compare the node pointed to by it to the new
// node till the position to insert the new node is found.
bool found = false;
while (!found && itr != readyList.end()) {
// If the execution tick of the new node is less than the node then
// this is the position to insert
if (exec_tick < itr->execTick)
found = true;
// If the execution tick of the new node is equal to the node then
// sort in ascending order of sequence numbers
else if (exec_tick == itr->execTick) {
// If the sequence number of the new node is less than the node
// then this is the position to insert
if (seq_num < itr->seqNum)
found = true;
// Else go to next node
else
itr++;
}
// If the execution tick of the new node is greater than the node then
// go to the next node
else
itr++;
}
readyList.insert(itr, ready_node);
// Update the stat for max size reached of the readyList
maxReadyListSize = std::max<double>(readyList.size(),
maxReadyListSize.value());
}
void
TraceCPU::ElasticDataGen::printReadyList() {
auto itr = readyList.begin();
if (itr == readyList.end()) {
DPRINTF(TraceCPUData, "readyList is empty.\n");
return;
}
DPRINTF(TraceCPUData, "Printing readyList:\n");
while (itr != readyList.end()) {
auto graph_itr = depGraph.find(itr->seqNum);
GraphNode* node_ptr M5_VAR_USED = graph_itr->second;
DPRINTFR(TraceCPUData, "\t%lld(%s), %lld\n", itr->seqNum,
node_ptr->typeToStr(), itr->execTick);
itr++;
}
}
TraceCPU::ElasticDataGen::HardwareResource::HardwareResource(
uint16_t max_rob, uint16_t max_stores, uint16_t max_loads)
: sizeROB(max_rob),
sizeStoreBuffer(max_stores),
sizeLoadBuffer(max_loads),
oldestInFlightRobNum(UINT64_MAX),
numInFlightLoads(0),
numInFlightStores(0)
{}
void
TraceCPU::ElasticDataGen::HardwareResource::occupy(const GraphNode* new_node)
{
// Occupy ROB entry for the issued node
// Merely maintain the oldest node, i.e. numerically least robNum by saving
// it in the variable oldestInFLightRobNum.
inFlightNodes[new_node->seqNum] = new_node->robNum;
oldestInFlightRobNum = inFlightNodes.begin()->second;
// Occupy Load/Store Buffer entry for the issued node if applicable
if (new_node->isLoad()) {
++numInFlightLoads;
} else if (new_node->isStore()) {
++numInFlightStores;
} // else if it is a non load/store node, no buffer entry is occupied
printOccupancy();
}
void
TraceCPU::ElasticDataGen::HardwareResource::release(const GraphNode* done_node)
{
assert(!inFlightNodes.empty());
DPRINTFR(TraceCPUData, "\tClearing done seq. num %d from inFlightNodes..\n",
done_node->seqNum);
assert(inFlightNodes.find(done_node->seqNum) != inFlightNodes.end());
inFlightNodes.erase(done_node->seqNum);
if (inFlightNodes.empty()) {
// If we delete the only in-flight node and then the
// oldestInFlightRobNum is set to it's initialized (max) value.
oldestInFlightRobNum = UINT64_MAX;
} else {
// Set the oldest in-flight node rob number equal to the first node in
// the inFlightNodes since that will have the numerically least value.
oldestInFlightRobNum = inFlightNodes.begin()->second;
}
DPRINTFR(TraceCPUData, "\tCleared. inFlightNodes.size() = %d, "
"oldestInFlightRobNum = %d\n", inFlightNodes.size(),
oldestInFlightRobNum);
// A store is considered complete when a request is sent, thus ROB entry is
// freed. But it occupies an entry in the Store Buffer until its response
// is received. A load is considered complete when a response is received,
// thus both ROB and Load Buffer entries can be released.
if (done_node->isLoad()) {
assert(numInFlightLoads != 0);
--numInFlightLoads;
}
// For normal writes, we send the requests out and clear a store buffer
// entry on response. For writes which are strictly ordered, for e.g.
// writes to device registers, we do that within release() which is called
// when node is executed and taken off from readyList.
if (done_node->isStore() && done_node->isStrictlyOrdered()) {
releaseStoreBuffer();
}
}
void
TraceCPU::ElasticDataGen::HardwareResource::releaseStoreBuffer()
{
assert(numInFlightStores != 0);
--numInFlightStores;
}
bool
TraceCPU::ElasticDataGen::HardwareResource::isAvailable(
const GraphNode* new_node) const
{
uint16_t num_in_flight_nodes;
if (inFlightNodes.empty()) {
num_in_flight_nodes = 0;
DPRINTFR(TraceCPUData, "\t\tChecking resources to issue seq. num %lli:"
" #in-flight nodes = 0", new_node->seqNum);
} else if (new_node->robNum > oldestInFlightRobNum) {
// This is the intuitive case where new dep-free node is younger
// instruction than the oldest instruction in-flight. Thus we make sure
// in_flight_nodes does not overflow.
num_in_flight_nodes = new_node->robNum - oldestInFlightRobNum;
DPRINTFR(TraceCPUData, "\t\tChecking resources to issue seq. num %lli:"
" #in-flight nodes = %d - %d = %d", new_node->seqNum,
new_node->robNum, oldestInFlightRobNum, num_in_flight_nodes);
} else {
// This is the case where an instruction older than the oldest in-
// flight instruction becomes dep-free. Thus we must have already
// accounted for the entry in ROB for this new dep-free node.
// Immediately after this check returns true, oldestInFlightRobNum will
// be updated in occupy(). We simply let this node issue now.
num_in_flight_nodes = 0;
DPRINTFR(TraceCPUData, "\t\tChecking resources to issue seq. num %lli:"
" new oldestInFlightRobNum = %d, #in-flight nodes ignored",
new_node->seqNum, new_node->robNum);
}
DPRINTFR(TraceCPUData, ", LQ = %d/%d, SQ = %d/%d.\n",
numInFlightLoads, sizeLoadBuffer,
numInFlightStores, sizeStoreBuffer);
// Check if resources are available to issue the specific node
if (num_in_flight_nodes >= sizeROB) {
return false;
}
if (new_node->isLoad() && numInFlightLoads >= sizeLoadBuffer) {
return false;
}
if (new_node->isStore() && numInFlightStores >= sizeStoreBuffer) {
return false;
}
return true;
}
bool
TraceCPU::ElasticDataGen::HardwareResource::awaitingResponse() const {
// Return true if there is at least one read or write request in flight
return (numInFlightStores != 0 || numInFlightLoads != 0);
}
void
TraceCPU::ElasticDataGen::HardwareResource::printOccupancy() {
DPRINTFR(TraceCPUData, "oldestInFlightRobNum = %d, "
"LQ = %d/%d, SQ = %d/%d.\n",
oldestInFlightRobNum,
numInFlightLoads, sizeLoadBuffer,
numInFlightStores, sizeStoreBuffer);
}
void
TraceCPU::FixedRetryGen::regStats()
{
using namespace Stats;
numSendAttempted
.name(name() + ".numSendAttempted")
.desc("Number of first attempts to send a request")
;
numSendSucceeded
.name(name() + ".numSendSucceeded")
.desc("Number of successful first attempts")
;
numSendFailed
.name(name() + ".numSendFailed")
.desc("Number of failed first attempts")
;
numRetrySucceeded
.name(name() + ".numRetrySucceeded")
.desc("Number of successful retries")
;
instLastTick
.name(name() + ".instLastTick")
.desc("Last tick simulated from the fixed inst trace")
;
}
Tick
TraceCPU::FixedRetryGen::init()
{
DPRINTF(TraceCPUInst, "Initializing instruction fetch request generator"
" IcacheGen: fixed issue with retry.\n");
if (nextExecute()) {
DPRINTF(TraceCPUInst, "\tFirst tick = %d.\n", currElement.tick);
return currElement.tick;
} else {
panic("Read of first message in the trace failed.\n");
return MaxTick;
}
}
bool
TraceCPU::FixedRetryGen::tryNext()
{
// If there is a retry packet, try to send it
if (retryPkt) {
DPRINTF(TraceCPUInst, "Trying to send retry packet.\n");
if (!port.sendTimingReq(retryPkt)) {
// Still blocked! This should never occur.
DPRINTF(TraceCPUInst, "Retry packet sending failed.\n");
return false;
}
++numRetrySucceeded;
} else {
DPRINTF(TraceCPUInst, "Trying to send packet for currElement.\n");
// try sending current element
assert(currElement.isValid());
++numSendAttempted;
if (!send(currElement.addr, currElement.blocksize,
currElement.cmd, currElement.flags, currElement.pc)) {
DPRINTF(TraceCPUInst, "currElement sending failed.\n");
++numSendFailed;
// return false to indicate not to schedule next event
return false;
} else {
++numSendSucceeded;
}
}
// If packet was sent successfully, either retryPkt or currElement, return
// true to indicate to schedule event at current Tick plus delta. If packet
// was sent successfully and there is no next packet to send, return false.
DPRINTF(TraceCPUInst, "Packet sent successfully, trying to read next "
"element.\n");
retryPkt = nullptr;
// Read next element into currElement, currElement gets cleared so save the
// tick to calculate delta
Tick last_tick = currElement.tick;
if (nextExecute()) {
assert(currElement.tick >= last_tick);
delta = currElement.tick - last_tick;
}
return !traceComplete;
}
void
TraceCPU::FixedRetryGen::exit()
{
trace.reset();
}
bool
TraceCPU::FixedRetryGen::nextExecute()
{
if (traceComplete)
// We are at the end of the file, thus we have no more messages.
// Return false.
return false;
//Reset the currElement to the default values
currElement.clear();
// Read the next line to get the next message. If that fails then end of
// trace has been reached and traceComplete needs to be set in addition
// to returning false. If successful then next message is in currElement.
if (!trace.read(&currElement)) {
traceComplete = true;
instLastTick = curTick();
return false;
}
DPRINTF(TraceCPUInst, "inst fetch: %c addr %d pc %#x size %d tick %d\n",
currElement.cmd.isRead() ? 'r' : 'w',
currElement.addr,
currElement.pc,
currElement.blocksize,
currElement.tick);
return true;
}
bool
TraceCPU::FixedRetryGen::send(Addr addr, unsigned size, const MemCmd& cmd,
Request::FlagsType flags, Addr pc)
{
// Create new request
Request* req = new Request(addr, size, flags, masterID);
req->setPC(pc);
// If this is not done it triggers assert in L1 cache for invalid contextId
req->setThreadContext(ContextID(0), ThreadID(0));
// Embed it in a packet
PacketPtr pkt = new Packet(req, cmd);
uint8_t* pkt_data = new uint8_t[req->getSize()];
pkt->dataDynamic(pkt_data);
if (cmd.isWrite()) {
memset(pkt_data, 0xA, req->getSize());
}
// Call MasterPort method to send a timing request for this packet
bool success = port.sendTimingReq(pkt);
if (!success) {
// If it fails, save the packet to retry when a retry is signalled by
// the cache
retryPkt = pkt;
}
return success;
}
void
TraceCPU::icacheRetryRecvd()
{
// Schedule an event to go through the control flow in the same tick as
// retry is received
DPRINTF(TraceCPUInst, "Icache retry received. Scheduling next IcacheGen"
" event @%lli.\n", curTick());
schedule(icacheNextEvent, curTick());
}
void
TraceCPU::dcacheRetryRecvd()
{
// Schedule an event to go through the execute flow in the same tick as
// retry is received
DPRINTF(TraceCPUData, "Dcache retry received. Scheduling next DcacheGen"
" event @%lli.\n", curTick());
schedule(dcacheNextEvent, curTick());
}
void
TraceCPU::schedDcacheNextEvent(Tick when)
{
if (!dcacheNextEvent.scheduled()) {
DPRINTF(TraceCPUData, "Scheduling next DcacheGen event at %lli.\n",
when);
schedule(dcacheNextEvent, when);
++numSchedDcacheEvent;
} else if (when < dcacheNextEvent.when()) {
DPRINTF(TraceCPUData, "Re-scheduling next dcache event from %lli"
" to %lli.\n", dcacheNextEvent.when(), when);
reschedule(dcacheNextEvent, when);
}
}
bool
TraceCPU::IcachePort::recvTimingResp(PacketPtr pkt)
{
// All responses on the instruction fetch side are ignored. Simply delete
// the request and packet to free allocated memory
delete pkt->req;
delete pkt;
return true;
}
void
TraceCPU::IcachePort::recvReqRetry()
{
owner->icacheRetryRecvd();
}
void
TraceCPU::dcacheRecvTimingResp(PacketPtr pkt)
{
DPRINTF(TraceCPUData, "Received timing response from Dcache.\n");
dcacheGen.completeMemAccess(pkt);
}
bool
TraceCPU::DcachePort::recvTimingResp(PacketPtr pkt)
{
// Handle the responses for data memory requests which is done inside the
// elastic data generator
owner->dcacheRecvTimingResp(pkt);
// After processing the response delete the request and packet to free
// memory
delete pkt->req;
delete pkt;
return true;
}
void
TraceCPU::DcachePort::recvReqRetry()
{
owner->dcacheRetryRecvd();
}
TraceCPU::ElasticDataGen::InputStream::InputStream(const std::string& filename)
: trace(filename),
microOpCount(0)
{
// Create a protobuf message for the header and read it from the stream
ProtoMessage::InstDepRecordHeader header_msg;
if (!trace.read(header_msg)) {
panic("Failed to read packet header from %s\n", filename);
if (header_msg.tick_freq() != SimClock::Frequency) {
panic("Trace %s was recorded with a different tick frequency %d\n",
header_msg.tick_freq());
}
} else {
// Assign window size equal to the field in the trace that was recorded
// when the data dependency trace was captured in the o3cpu model
windowSize = header_msg.window_size();
}
}
void
TraceCPU::ElasticDataGen::InputStream::reset()
{
trace.reset();
}
bool
TraceCPU::ElasticDataGen::InputStream::read(GraphNode* element)
{
ProtoMessage::InstDepRecord pkt_msg;
if (trace.read(pkt_msg)) {
// Required fields
element->seqNum = pkt_msg.seq_num();
element->type = pkt_msg.type();
element->compDelay = pkt_msg.comp_delay();
// Repeated field robDepList
element->clearRobDep();
assert((pkt_msg.rob_dep()).size() <= element->maxRobDep);
for (int i = 0; i < (pkt_msg.rob_dep()).size(); i++) {
element->robDep[element->numRobDep] = pkt_msg.rob_dep(i);
element->numRobDep += 1;
}
// Repeated field
element->clearRegDep();
assert((pkt_msg.reg_dep()).size() <= TheISA::MaxInstSrcRegs);
for (int i = 0; i < (pkt_msg.reg_dep()).size(); i++) {
// There is a possibility that an instruction has both, a register
// and order dependency on an instruction. In such a case, the
// register dependency is omitted
bool duplicate = false;
for (int j = 0; j < element->numRobDep; j++) {
duplicate |= (pkt_msg.reg_dep(i) == element->robDep[j]);
}
if (!duplicate) {
element->regDep[element->numRegDep] = pkt_msg.reg_dep(i);
element->numRegDep += 1;
}
}
// Optional fields
if (pkt_msg.has_addr())
element->addr = pkt_msg.addr();
else
element->addr = 0;
if (pkt_msg.has_size())
element->size = pkt_msg.size();
else
element->size = 0;
if (pkt_msg.has_flags())
element->flags = pkt_msg.flags();
else
element->flags = 0;
if (pkt_msg.has_pc())
element->pc = pkt_msg.pc();
else
element->pc = 0;
// ROB occupancy number
++microOpCount;
if (pkt_msg.has_weight()) {
microOpCount += pkt_msg.weight();
}
element->robNum = microOpCount;
return true;
}
// We have reached the end of the file
return false;
}
bool
TraceCPU::ElasticDataGen::GraphNode::removeRegDep(NodeSeqNum reg_dep)
{
for (auto& own_reg_dep : regDep) {
if (own_reg_dep == reg_dep) {
// If register dependency is found, make it zero and return true
own_reg_dep = 0;
--numRegDep;
assert(numRegDep >= 0);
DPRINTFR(TraceCPUData, "\tFor %lli: Marking register dependency %lli "
"done.\n", seqNum, reg_dep);
return true;
}
}
// Return false if the dependency is not found
return false;
}
bool
TraceCPU::ElasticDataGen::GraphNode::removeRobDep(NodeSeqNum rob_dep)
{
for (auto& own_rob_dep : robDep) {
if (own_rob_dep == rob_dep) {
// If the rob dependency is found, make it zero and return true
own_rob_dep = 0;
--numRobDep;
assert(numRobDep >= 0);
DPRINTFR(TraceCPUData, "\tFor %lli: Marking ROB dependency %lli "
"done.\n", seqNum, rob_dep);
return true;
}
}
return false;
}
void
TraceCPU::ElasticDataGen::GraphNode::clearRegDep() {
for (auto& own_reg_dep : regDep) {
own_reg_dep = 0;
}
numRegDep = 0;
}
void
TraceCPU::ElasticDataGen::GraphNode::clearRobDep() {
for (auto& own_rob_dep : robDep) {
own_rob_dep = 0;
}
numRobDep = 0;
}
bool
TraceCPU::ElasticDataGen::GraphNode::removeDepOnInst(NodeSeqNum done_seq_num)
{
// If it is an rob dependency then remove it
if (!removeRobDep(done_seq_num)) {
// If it is not an rob dependency then it must be a register dependency
// If the register dependency is not found, it violates an assumption
// and must be caught by assert.
bool regdep_found M5_VAR_USED = removeRegDep(done_seq_num);
assert(regdep_found);
}
// Return true if the node is dependency free
return (numRobDep == 0 && numRegDep == 0);
}
void
TraceCPU::ElasticDataGen::GraphNode::writeElementAsTrace() const
{
DPRINTFR(TraceCPUData, "%lli", seqNum);
DPRINTFR(TraceCPUData, ",%s", typeToStr());
if (isLoad() || isStore()) {
DPRINTFR(TraceCPUData, ",%i", addr);
DPRINTFR(TraceCPUData, ",%i", size);
DPRINTFR(TraceCPUData, ",%i", flags);
}
DPRINTFR(TraceCPUData, ",%lli", compDelay);
int i = 0;
DPRINTFR(TraceCPUData, "robDep:");
while (robDep[i] != 0) {
DPRINTFR(TraceCPUData, ",%lli", robDep[i]);
i++;
}
i = 0;
DPRINTFR(TraceCPUData, "regDep:");
while (regDep[i] != 0) {
DPRINTFR(TraceCPUData, ",%lli", regDep[i]);
i++;
}
auto child_itr = dependents.begin();
DPRINTFR(TraceCPUData, "dependents:");
while (child_itr != dependents.end()) {
DPRINTFR(TraceCPUData, ":%lli", (*child_itr)->seqNum);
child_itr++;
}
DPRINTFR(TraceCPUData, "\n");
}
std::string
TraceCPU::ElasticDataGen::GraphNode::typeToStr() const
{
return Record::RecordType_Name(type);
}
TraceCPU::FixedRetryGen::InputStream::InputStream(const std::string& filename)
: trace(filename)
{
// Create a protobuf message for the header and read it from the stream
ProtoMessage::PacketHeader header_msg;
if (!trace.read(header_msg)) {
panic("Failed to read packet header from %s\n", filename);
if (header_msg.tick_freq() != SimClock::Frequency) {
panic("Trace %s was recorded with a different tick frequency %d\n",
header_msg.tick_freq());
}
}
}
void
TraceCPU::FixedRetryGen::InputStream::reset()
{
trace.reset();
}
bool
TraceCPU::FixedRetryGen::InputStream::read(TraceElement* element)
{
ProtoMessage::Packet pkt_msg;
if (trace.read(pkt_msg)) {
element->cmd = pkt_msg.cmd();
element->addr = pkt_msg.addr();
element->blocksize = pkt_msg.size();
element->tick = pkt_msg.tick();
element->flags = pkt_msg.has_flags() ? pkt_msg.flags() : 0;
element->pc = pkt_msg.has_pc() ? pkt_msg.pc() : 0;
return true;
}
// We have reached the end of the file
return false;
}