gem5/src/mem/protocol/MI_example-dir.sm
Nilay Vaish 734ef9a209 SLICC: Use pointers for directory entries
SLICC uses pointers for cache and TBE entries but not for directory entries.
This patch changes the protocols, SLICC and Ruby memory system so that even
directory entries are referenced using pointers.

--HG--
extra : rebase_source : abeb4ac78033d003153751f216fd1948251fcfad
2011-12-31 16:38:30 -06:00

632 lines
20 KiB
Text

machine(Directory, "Directory protocol")
: DirectoryMemory * directory,
MemoryControl * memBuffer,
int directory_latency = 12
{
MessageBuffer forwardFromDir, network="To", virtual_network="3", ordered="false", vnet_type="forward";
MessageBuffer responseFromDir, network="To", virtual_network="4", ordered="false", vnet_type="response";
MessageBuffer dmaResponseFromDir, network="To", virtual_network="1", ordered="true", vnet_type="response";
MessageBuffer requestToDir, network="From", virtual_network="2", ordered="true", vnet_type="request";
MessageBuffer dmaRequestToDir, network="From", virtual_network="0", ordered="true", vnet_type="request";
// STATES
state_declaration(State, desc="Directory states", default="Directory_State_I") {
// Base states
I, AccessPermission:Read_Write, desc="Invalid";
M, AccessPermission:Invalid, desc="Modified";
M_DRD, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA read";
M_DWR, AccessPermission:Busy, desc="Blocked on an invalidation for a DMA write";
M_DWRI, AccessPermission:Busy, desc="Intermediate state M_DWR-->I";
M_DRDI, AccessPermission:Busy, desc="Intermediate state M_DRD-->I";
IM, AccessPermission:Busy, desc="Intermediate state I-->M";
MI, AccessPermission:Busy, desc="Intermediate state M-->I";
ID, AccessPermission:Busy, desc="Intermediate state for DMA_READ when in I";
ID_W, AccessPermission:Busy, desc="Intermediate state for DMA_WRITE when in I";
}
// Events
enumeration(Event, desc="Directory events") {
// processor requests
GETX, desc="A GETX arrives";
GETS, desc="A GETS arrives";
PUTX, desc="A PUTX arrives";
PUTX_NotOwner, desc="A PUTX arrives";
// DMA requests
DMA_READ, desc="A DMA Read memory request";
DMA_WRITE, desc="A DMA Write memory request";
// Memory Controller
Memory_Data, desc="Fetched data from memory arrives";
Memory_Ack, desc="Writeback Ack from memory arrives";
}
// TYPES
// DirectoryEntry
structure(Entry, desc="...", interface="AbstractEntry") {
State DirectoryState, desc="Directory state";
DataBlock DataBlk, desc="data for the block";
NetDest Sharers, desc="Sharers for this block";
NetDest Owner, desc="Owner of this block";
}
// TBE entries for DMA requests
structure(TBE, desc="TBE entries for outstanding DMA requests") {
Address PhysicalAddress, desc="physical address";
State TBEState, desc="Transient State";
DataBlock DataBlk, desc="Data to be written (DMA write only)";
int Len, desc="...";
MachineID DmaRequestor, desc="DMA requestor";
}
structure(TBETable, external="yes") {
TBE lookup(Address);
void allocate(Address);
void deallocate(Address);
bool isPresent(Address);
}
// ** OBJECTS **
TBETable TBEs, template_hack="<Directory_TBE>";
void set_tbe(TBE b);
void unset_tbe();
Entry getDirectoryEntry(Address addr), return_by_pointer="yes" {
Entry dir_entry := static_cast(Entry, "pointer", directory[addr]);
if (is_valid(dir_entry)) {
return dir_entry;
}
dir_entry := static_cast(Entry, "pointer",
directory.allocate(addr, new Entry));
return dir_entry;
}
State getState(TBE tbe, Address addr) {
if (is_valid(tbe)) {
return tbe.TBEState;
} else if (directory.isPresent(addr)) {
return getDirectoryEntry(addr).DirectoryState;
} else {
return State:I;
}
}
void setState(TBE tbe, Address addr, State state) {
if (is_valid(tbe)) {
tbe.TBEState := state;
}
if (directory.isPresent(addr)) {
if (state == State:M) {
assert(getDirectoryEntry(addr).Owner.count() == 1);
assert(getDirectoryEntry(addr).Sharers.count() == 0);
}
getDirectoryEntry(addr).DirectoryState := state;
if (state == State:I) {
assert(getDirectoryEntry(addr).Owner.count() == 0);
assert(getDirectoryEntry(addr).Sharers.count() == 0);
directory.invalidateBlock(addr);
}
}
}
AccessPermission getAccessPermission(Address addr) {
TBE tbe := TBEs[addr];
if(is_valid(tbe)) {
return Directory_State_to_permission(tbe.TBEState);
}
if(directory.isPresent(addr)) {
return Directory_State_to_permission(getDirectoryEntry(addr).DirectoryState);
}
return AccessPermission:NotPresent;
}
void setAccessPermission(Address addr, State state) {
if (directory.isPresent(addr)) {
getDirectoryEntry(addr).changePermission(Directory_State_to_permission(state));
}
}
DataBlock getDataBlock(Address addr), return_by_ref="yes" {
return getDirectoryEntry(addr).DataBlk;
}
// ** OUT_PORTS **
out_port(forwardNetwork_out, RequestMsg, forwardFromDir);
out_port(responseNetwork_out, ResponseMsg, responseFromDir);
out_port(requestQueue_out, ResponseMsg, requestToDir); // For recycling requests
out_port(dmaResponseNetwork_out, DMAResponseMsg, dmaResponseFromDir);
//added by SS
out_port(memQueue_out, MemoryMsg, memBuffer);
// ** IN_PORTS **
in_port(dmaRequestQueue_in, DMARequestMsg, dmaRequestToDir) {
if (dmaRequestQueue_in.isReady()) {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBE tbe := TBEs[in_msg.LineAddress];
if (in_msg.Type == DMARequestType:READ) {
trigger(Event:DMA_READ, in_msg.LineAddress, tbe);
} else if (in_msg.Type == DMARequestType:WRITE) {
trigger(Event:DMA_WRITE, in_msg.LineAddress, tbe);
} else {
error("Invalid message");
}
}
}
}
in_port(requestQueue_in, RequestMsg, requestToDir) {
if (requestQueue_in.isReady()) {
peek(requestQueue_in, RequestMsg) {
TBE tbe := TBEs[in_msg.Address];
if (in_msg.Type == CoherenceRequestType:GETS) {
trigger(Event:GETS, in_msg.Address, tbe);
} else if (in_msg.Type == CoherenceRequestType:GETX) {
trigger(Event:GETX, in_msg.Address, tbe);
} else if (in_msg.Type == CoherenceRequestType:PUTX) {
if (getDirectoryEntry(in_msg.Address).Owner.isElement(in_msg.Requestor)) {
trigger(Event:PUTX, in_msg.Address, tbe);
} else {
trigger(Event:PUTX_NotOwner, in_msg.Address, tbe);
}
} else {
error("Invalid message");
}
}
}
}
//added by SS
// off-chip memory request/response is done
in_port(memQueue_in, MemoryMsg, memBuffer) {
if (memQueue_in.isReady()) {
peek(memQueue_in, MemoryMsg) {
TBE tbe := TBEs[in_msg.Address];
if (in_msg.Type == MemoryRequestType:MEMORY_READ) {
trigger(Event:Memory_Data, in_msg.Address, tbe);
} else if (in_msg.Type == MemoryRequestType:MEMORY_WB) {
trigger(Event:Memory_Ack, in_msg.Address, tbe);
} else {
DPRINTF(RubySlicc,"%s\n", in_msg.Type);
error("Invalid message");
}
}
}
}
// Actions
action(a_sendWriteBackAck, "a", desc="Send writeback ack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(l_sendWriteBackAck, "la", desc="Send writeback ack to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_ACK;
out_msg.Requestor := in_msg.OriginalRequestorMachId;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(b_sendWriteBackNack, "b", desc="Send writeback nack to requestor") {
peek(requestQueue_in, RequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:WB_NACK;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination.add(in_msg.Requestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(c_clearOwner, "c", desc="Clear the owner field") {
getDirectoryEntry(address).Owner.clear();
}
action(d_sendData, "d", desc="Send data to requestor") {
peek(memQueue_in, MemoryMsg) {
enqueue(responseNetwork_out, ResponseMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := CoherenceResponseType:DATA;
out_msg.Sender := machineID;
out_msg.Destination.add(in_msg.OriginalRequestorMachId);
out_msg.DataBlk := in_msg.DataBlk;
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(dr_sendDMAData, "dr", desc="Send Data to DMA controller from directory") {
peek(memQueue_in, MemoryMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(drp_sendDMAData, "drp", desc="Send Data to DMA controller from incoming PUTX") {
peek(requestQueue_in, RequestMsg) {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:DATA;
out_msg.DataBlk := in_msg.DataBlk; // we send the entire data block and rely on the dma controller to split it up if need be
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Response_Data;
}
}
}
action(da_sendDMAAck, "da", desc="Send Ack to DMA controller") {
enqueue(dmaResponseNetwork_out, DMAResponseMsg, latency="1") {
assert(is_valid(tbe));
out_msg.PhysicalAddress := address;
out_msg.LineAddress := address;
out_msg.Type := DMAResponseType:ACK;
out_msg.Destination.add(tbe.DmaRequestor);
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
action(e_ownerIsRequestor, "e", desc="The owner is now the requestor") {
peek(requestQueue_in, RequestMsg) {
getDirectoryEntry(address).Owner.clear();
getDirectoryEntry(address).Owner.add(in_msg.Requestor);
}
}
action(f_forwardRequest, "f", desc="Forward request to owner") {
peek(requestQueue_in, RequestMsg) {
APPEND_TRANSITION_COMMENT("Own: ");
APPEND_TRANSITION_COMMENT(getDirectoryEntry(in_msg.Address).Owner);
APPEND_TRANSITION_COMMENT("Req: ");
APPEND_TRANSITION_COMMENT(in_msg.Requestor);
enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
out_msg.Address := address;
out_msg.Type := in_msg.Type;
out_msg.Requestor := in_msg.Requestor;
out_msg.Destination := getDirectoryEntry(in_msg.Address).Owner;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(inv_sendCacheInvalidate, "inv", desc="Invalidate a cache block") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(forwardNetwork_out, RequestMsg, latency=directory_latency) {
out_msg.Address := address;
out_msg.Type := CoherenceRequestType:INV;
out_msg.Requestor := machineID;
out_msg.Destination := getDirectoryEntry(in_msg.PhysicalAddress).Owner;
out_msg.MessageSize := MessageSizeType:Writeback_Control;
}
}
}
action(i_popIncomingRequestQueue, "i", desc="Pop incoming request queue") {
requestQueue_in.dequeue();
}
action(p_popIncomingDMARequestQueue, "p", desc="Pop incoming DMA queue") {
dmaRequestQueue_in.dequeue();
}
action(l_writeDataToMemory, "pl", desc="Write PUTX data to memory") {
peek(requestQueue_in, RequestMsg) {
// assert(in_msg.Dirty);
// assert(in_msg.MessageSize == MessageSizeType:Writeback_Data);
getDirectoryEntry(in_msg.Address).DataBlk := in_msg.DataBlk;
//getDirectoryEntry(in_msg.Address).DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.Address), in_msg.Len);
}
}
action(dwt_writeDMADataFromTBE, "dwt", desc="DMA Write data to memory from TBE") {
assert(is_valid(tbe));
getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
}
action(v_allocateTBE, "v", desc="Allocate TBE") {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DataBlk := in_msg.DataBlk;
tbe.PhysicalAddress := in_msg.PhysicalAddress;
tbe.Len := in_msg.Len;
tbe.DmaRequestor := in_msg.Requestor;
}
}
action(r_allocateTbeForDmaRead, "\r", desc="Allocate TBE for DMA Read") {
peek(dmaRequestQueue_in, DMARequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DmaRequestor := in_msg.Requestor;
}
}
action(v_allocateTBEFromRequestNet, "\v", desc="Allocate TBE") {
peek(requestQueue_in, RequestMsg) {
TBEs.allocate(address);
set_tbe(TBEs[address]);
tbe.DataBlk := in_msg.DataBlk;
}
}
action(w_deallocateTBE, "w", desc="Deallocate TBE") {
TBEs.deallocate(address);
unset_tbe();
}
action(z_recycleRequestQueue, "z", desc="recycle request queue") {
requestQueue_in.recycle();
}
action(y_recycleDMARequestQueue, "y", desc="recycle dma request queue") {
dmaRequestQueue_in.recycle();
}
action(qf_queueMemoryFetchRequest, "qf", desc="Queue off-chip fetch request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := getDirectoryEntry(in_msg.Address).DataBlk;
DPRINTF(RubySlicc,"%s\n", out_msg);
}
}
}
action(qf_queueMemoryFetchRequestDMA, "qfd", desc="Queue off-chip fetch request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_READ;
out_msg.Sender := machineID;
//out_msg.OriginalRequestorMachId := machineID;
out_msg.MessageSize := in_msg.MessageSize;
out_msg.DataBlk := getDirectoryEntry(address).DataBlk;
DPRINTF(RubySlicc,"%s\n", out_msg);
}
}
}
action(qw_queueMemoryWBRequest_partial, "qwp", desc="Queue off-chip writeback request") {
peek(dmaRequestQueue_in, DMARequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
//out_msg.OriginalRequestorMachId := machineID;
//out_msg.DataBlk := in_msg.DataBlk;
out_msg.DataBlk.copyPartial(in_msg.DataBlk, addressOffset(in_msg.PhysicalAddress), in_msg.Len);
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DPRINTF(RubySlicc,"%s\n", out_msg);
}
}
}
action(qw_queueMemoryWBRequest_partialTBE, "qwt", desc="Queue off-chip writeback request") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
assert(is_valid(tbe));
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
// get incoming data
// out_msg.DataBlk := in_msg.DataBlk;
out_msg.DataBlk.copyPartial(tbe.DataBlk, addressOffset(tbe.PhysicalAddress), tbe.Len);
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DPRINTF(RubySlicc,"%s\n", out_msg);
}
}
}
action(l_queueMemoryWBRequest, "lq", desc="Write PUTX data to memory") {
peek(requestQueue_in, RequestMsg) {
enqueue(memQueue_out, MemoryMsg, latency="1") {
out_msg.Address := address;
out_msg.Type := MemoryRequestType:MEMORY_WB;
out_msg.Sender := machineID;
out_msg.OriginalRequestorMachId := in_msg.Requestor;
out_msg.DataBlk := in_msg.DataBlk;
out_msg.MessageSize := in_msg.MessageSize;
//out_msg.Prefetch := in_msg.Prefetch;
DPRINTF(RubySlicc,"%s\n", out_msg);
}
}
}
action(l_popMemQueue, "q", desc="Pop off-chip request queue") {
memQueue_in.dequeue();
}
action(w_writeDataToMemoryFromTBE, "\w", desc="Write date to directory memory from TBE") {
//getDirectoryEntry(address).DataBlk := TBEs[address].DataBlk;
assert(is_valid(tbe));
getDirectoryEntry(address).DataBlk.copyPartial(tbe.DataBlk,
addressOffset(tbe.PhysicalAddress),
tbe.Len);
}
// TRANSITIONS
transition({M_DRD, M_DWR, M_DWRI, M_DRDI}, GETX) {
z_recycleRequestQueue;
}
transition({IM, MI, ID, ID_W}, {GETX, GETS, PUTX, PUTX_NotOwner} ) {
z_recycleRequestQueue;
}
transition({IM, MI, ID, ID_W}, {DMA_READ, DMA_WRITE} ) {
y_recycleDMARequestQueue;
}
transition(I, GETX, IM) {
//d_sendData;
qf_queueMemoryFetchRequest;
e_ownerIsRequestor;
i_popIncomingRequestQueue;
}
transition(IM, Memory_Data, M) {
d_sendData;
//e_ownerIsRequestor;
l_popMemQueue;
}
transition(I, DMA_READ, ID) {
//dr_sendDMAData;
r_allocateTbeForDmaRead;
qf_queueMemoryFetchRequestDMA;
p_popIncomingDMARequestQueue;
}
transition(ID, Memory_Data, I) {
dr_sendDMAData;
//p_popIncomingDMARequestQueue;
w_deallocateTBE;
l_popMemQueue;
}
transition(I, DMA_WRITE, ID_W) {
v_allocateTBE;
qw_queueMemoryWBRequest_partial;
p_popIncomingDMARequestQueue;
}
transition(ID_W, Memory_Ack, I) {
dwt_writeDMADataFromTBE;
da_sendDMAAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(M, DMA_READ, M_DRD) {
v_allocateTBE;
inv_sendCacheInvalidate;
p_popIncomingDMARequestQueue;
}
transition(M_DRD, PUTX, M_DRDI) {
l_writeDataToMemory;
drp_sendDMAData;
c_clearOwner;
l_queueMemoryWBRequest;
i_popIncomingRequestQueue;
}
transition(M_DRDI, Memory_Ack, I) {
l_sendWriteBackAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(M, DMA_WRITE, M_DWR) {
v_allocateTBE;
inv_sendCacheInvalidate;
p_popIncomingDMARequestQueue;
}
transition(M_DWR, PUTX, M_DWRI) {
l_writeDataToMemory;
qw_queueMemoryWBRequest_partialTBE;
c_clearOwner;
i_popIncomingRequestQueue;
}
transition(M_DWRI, Memory_Ack, I) {
w_writeDataToMemoryFromTBE;
l_sendWriteBackAck;
da_sendDMAAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(M, GETX, M) {
f_forwardRequest;
e_ownerIsRequestor;
i_popIncomingRequestQueue;
}
transition(M, PUTX, MI) {
l_writeDataToMemory;
c_clearOwner;
v_allocateTBEFromRequestNet;
l_queueMemoryWBRequest;
i_popIncomingRequestQueue;
}
transition(MI, Memory_Ack, I) {
w_writeDataToMemoryFromTBE;
l_sendWriteBackAck;
w_deallocateTBE;
l_popMemQueue;
}
transition(M, PUTX_NotOwner, M) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
transition(I, PUTX_NotOwner, I) {
b_sendWriteBackNack;
i_popIncomingRequestQueue;
}
}