gem5/src/arch/x86/decoder.cc
Nilay Vaish 0ef3dcc27b x86: decode instructions with vex prefix
This patch updates the x86 decoder so that it can decode instructions with vex
prefix. It also updates the isa with opcodes from vex opcode maps 1, 2 and 3.
Note that none of the instructions have been implemented yet. The
implementations would be provided in due course of time.
2015-07-17 11:31:22 -05:00

702 lines
20 KiB
C++

/*
* Copyright (c) 2011 Google
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Gabe Black
*/
#include "arch/x86/decoder.hh"
#include "arch/x86/regs/misc.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "base/types.hh"
#include "debug/Decoder.hh"
namespace X86ISA
{
Decoder::State
Decoder::doResetState()
{
origPC = basePC + offset;
DPRINTF(Decoder, "Setting origPC to %#x\n", origPC);
instBytes = &decodePages->lookup(origPC);
chunkIdx = 0;
emi.rex = 0;
emi.legacy = 0;
emi.vex = 0;
emi.opcode.type = BadOpcode;
emi.opcode.op = 0;
immediateCollected = 0;
emi.immediate = 0;
emi.displacement = 0;
emi.dispSize = 0;
emi.modRM = 0;
emi.sib = 0;
if (instBytes->si) {
return FromCacheState;
} else {
instBytes->chunks.clear();
return PrefixState;
}
}
void
Decoder::process()
{
//This function drives the decoder state machine.
//Some sanity checks. You shouldn't try to process more bytes if
//there aren't any, and you shouldn't overwrite an already
//decoder ExtMachInst.
assert(!outOfBytes);
assert(!instDone);
if (state == ResetState)
state = doResetState();
if (state == FromCacheState) {
state = doFromCacheState();
} else {
instBytes->chunks.push_back(fetchChunk);
}
//While there's still something to do...
while (!instDone && !outOfBytes) {
uint8_t nextByte = getNextByte();
switch (state) {
case PrefixState:
state = doPrefixState(nextByte);
break;
case TwoByteVexState:
state = doTwoByteVexState(nextByte);
break;
case ThreeByteVexFirstState:
state = doThreeByteVexFirstState(nextByte);
break;
case ThreeByteVexSecondState:
state = doThreeByteVexSecondState(nextByte);
break;
case OneByteOpcodeState:
state = doOneByteOpcodeState(nextByte);
break;
case TwoByteOpcodeState:
state = doTwoByteOpcodeState(nextByte);
break;
case ThreeByte0F38OpcodeState:
state = doThreeByte0F38OpcodeState(nextByte);
break;
case ThreeByte0F3AOpcodeState:
state = doThreeByte0F3AOpcodeState(nextByte);
break;
case ModRMState:
state = doModRMState(nextByte);
break;
case SIBState:
state = doSIBState(nextByte);
break;
case DisplacementState:
state = doDisplacementState();
break;
case ImmediateState:
state = doImmediateState();
break;
case ErrorState:
panic("Went to the error state in the decoder.\n");
default:
panic("Unrecognized state! %d\n", state);
}
}
}
Decoder::State
Decoder::doFromCacheState()
{
DPRINTF(Decoder, "Looking at cache state.\n");
if ((fetchChunk & instBytes->masks[chunkIdx]) !=
instBytes->chunks[chunkIdx]) {
DPRINTF(Decoder, "Decode cache miss.\n");
// The chached chunks didn't match what was fetched. Fall back to the
// predecoder.
instBytes->chunks[chunkIdx] = fetchChunk;
instBytes->chunks.resize(chunkIdx + 1);
instBytes->si = NULL;
chunkIdx = 0;
fetchChunk = instBytes->chunks[0];
offset = origPC % sizeof(MachInst);
basePC = origPC - offset;
return PrefixState;
} else if (chunkIdx == instBytes->chunks.size() - 1) {
// We matched the cache, so use its value.
instDone = true;
offset = instBytes->lastOffset;
if (offset == sizeof(MachInst))
outOfBytes = true;
return ResetState;
} else {
// We matched so far, but need to check more chunks.
chunkIdx++;
outOfBytes = true;
return FromCacheState;
}
}
//Either get a prefix and record it in the ExtMachInst, or send the
//state machine on to get the opcode(s).
Decoder::State
Decoder::doPrefixState(uint8_t nextByte)
{
uint8_t prefix = Prefixes[nextByte];
State nextState = PrefixState;
// REX prefixes are only recognized in 64 bit mode.
if (prefix == RexPrefix && emi.mode.submode != SixtyFourBitMode)
prefix = 0;
if (prefix)
consumeByte();
switch(prefix)
{
//Operand size override prefixes
case OperandSizeOverride:
DPRINTF(Decoder, "Found operand size override prefix.\n");
emi.legacy.op = true;
break;
case AddressSizeOverride:
DPRINTF(Decoder, "Found address size override prefix.\n");
emi.legacy.addr = true;
break;
//Segment override prefixes
case CSOverride:
case DSOverride:
case ESOverride:
case FSOverride:
case GSOverride:
case SSOverride:
DPRINTF(Decoder, "Found segment override.\n");
emi.legacy.seg = prefix;
break;
case Lock:
DPRINTF(Decoder, "Found lock prefix.\n");
emi.legacy.lock = true;
break;
case Rep:
DPRINTF(Decoder, "Found rep prefix.\n");
emi.legacy.rep = true;
break;
case Repne:
DPRINTF(Decoder, "Found repne prefix.\n");
emi.legacy.repne = true;
break;
case RexPrefix:
DPRINTF(Decoder, "Found Rex prefix %#x.\n", nextByte);
emi.rex = nextByte;
break;
case Vex2Prefix:
DPRINTF(Decoder, "Found VEX two-byte prefix %#x.\n", nextByte);
emi.vex.zero = nextByte;
nextState = TwoByteVexState;
break;
case Vex3Prefix:
DPRINTF(Decoder, "Found VEX three-byte prefix %#x.\n", nextByte);
emi.vex.zero = nextByte;
nextState = ThreeByteVexFirstState;
break;
case 0:
nextState = OneByteOpcodeState;
break;
default:
panic("Unrecognized prefix %#x\n", nextByte);
}
return nextState;
}
Decoder::State
Decoder::doTwoByteVexState(uint8_t nextByte)
{
assert(emi.vex.zero == 0xc5);
consumeByte();
TwoByteVex tbe = 0;
tbe.first = nextByte;
emi.vex.first.r = tbe.first.r;
emi.vex.first.x = 1;
emi.vex.first.b = 1;
emi.vex.first.map_select = 1;
emi.vex.second.w = 0;
emi.vex.second.vvvv = tbe.first.vvvv;
emi.vex.second.l = tbe.first.l;
emi.vex.second.pp = tbe.first.pp;
emi.opcode.type = Vex;
return OneByteOpcodeState;
}
Decoder::State
Decoder::doThreeByteVexFirstState(uint8_t nextByte)
{
consumeByte();
emi.vex.first = nextByte;
return ThreeByteVexSecondState;
}
Decoder::State
Decoder::doThreeByteVexSecondState(uint8_t nextByte)
{
consumeByte();
emi.vex.second = nextByte;
emi.opcode.type = Vex;
return OneByteOpcodeState;
}
// Load the first opcode byte. Determine if there are more opcode bytes, and
// if not, what immediate and/or ModRM is needed.
Decoder::State
Decoder::doOneByteOpcodeState(uint8_t nextByte)
{
State nextState = ErrorState;
consumeByte();
if (emi.vex.zero != 0) {
DPRINTF(Decoder, "Found VEX opcode %#x.\n", nextByte);
emi.opcode.op = nextByte;
const uint8_t opcode_map = emi.vex.first.map_select;
nextState = processExtendedOpcode(ImmediateTypeVex[opcode_map]);
} else if (nextByte == 0x0f) {
nextState = TwoByteOpcodeState;
DPRINTF(Decoder, "Found opcode escape byte %#x.\n", nextByte);
} else {
DPRINTF(Decoder, "Found one byte opcode %#x.\n", nextByte);
emi.opcode.type = OneByteOpcode;
emi.opcode.op = nextByte;
nextState = processOpcode(ImmediateTypeOneByte, UsesModRMOneByte,
nextByte >= 0xA0 && nextByte <= 0xA3);
}
return nextState;
}
// Load the second opcode byte. Determine if there are more opcode bytes, and
// if not, what immediate and/or ModRM is needed.
Decoder::State
Decoder::doTwoByteOpcodeState(uint8_t nextByte)
{
State nextState = ErrorState;
consumeByte();
if (nextByte == 0x38) {
nextState = ThreeByte0F38OpcodeState;
DPRINTF(Decoder, "Found opcode escape byte %#x.\n", nextByte);
} else if (nextByte == 0x3a) {
nextState = ThreeByte0F3AOpcodeState;
DPRINTF(Decoder, "Found opcode escape byte %#x.\n", nextByte);
} else {
DPRINTF(Decoder, "Found two byte opcode %#x.\n", nextByte);
emi.opcode.type = TwoByteOpcode;
emi.opcode.op = nextByte;
nextState = processOpcode(ImmediateTypeTwoByte, UsesModRMTwoByte);
}
return nextState;
}
// Load the third opcode byte and determine what immediate and/or ModRM is
// needed.
Decoder::State
Decoder::doThreeByte0F38OpcodeState(uint8_t nextByte)
{
consumeByte();
DPRINTF(Decoder, "Found three byte 0F38 opcode %#x.\n", nextByte);
emi.opcode.type = ThreeByte0F38Opcode;
emi.opcode.op = nextByte;
return processOpcode(ImmediateTypeThreeByte0F38, UsesModRMThreeByte0F38);
}
// Load the third opcode byte and determine what immediate and/or ModRM is
// needed.
Decoder::State
Decoder::doThreeByte0F3AOpcodeState(uint8_t nextByte)
{
consumeByte();
DPRINTF(Decoder, "Found three byte 0F3A opcode %#x.\n", nextByte);
emi.opcode.type = ThreeByte0F3AOpcode;
emi.opcode.op = nextByte;
return processOpcode(ImmediateTypeThreeByte0F3A, UsesModRMThreeByte0F3A);
}
// Generic opcode processing which determines the immediate size, and whether
// or not there's a modrm byte.
Decoder::State
Decoder::processOpcode(ByteTable &immTable, ByteTable &modrmTable,
bool addrSizedImm)
{
State nextState = ErrorState;
const uint8_t opcode = emi.opcode.op;
//Figure out the effective operand size. This can be overriden to
//a fixed value at the decoder level.
int logOpSize;
if (emi.rex.w)
logOpSize = 3; // 64 bit operand size
else if (emi.legacy.op)
logOpSize = altOp;
else
logOpSize = defOp;
//Set the actual op size
emi.opSize = 1 << logOpSize;
//Figure out the effective address size. This can be overriden to
//a fixed value at the decoder level.
int logAddrSize;
if(emi.legacy.addr)
logAddrSize = altAddr;
else
logAddrSize = defAddr;
//Set the actual address size
emi.addrSize = 1 << logAddrSize;
//Figure out the effective stack width. This can be overriden to
//a fixed value at the decoder level.
emi.stackSize = 1 << stack;
//Figure out how big of an immediate we'll retreive based
//on the opcode.
int immType = immTable[opcode];
if (addrSizedImm)
immediateSize = SizeTypeToSize[logAddrSize - 1][immType];
else
immediateSize = SizeTypeToSize[logOpSize - 1][immType];
//Determine what to expect next
if (modrmTable[opcode]) {
nextState = ModRMState;
} else {
if(immediateSize) {
nextState = ImmediateState;
} else {
instDone = true;
nextState = ResetState;
}
}
return nextState;
}
Decoder::State
Decoder::processExtendedOpcode(ByteTable &immTable)
{
//Figure out the effective operand size. This can be overriden to
//a fixed value at the decoder level.
int logOpSize;
if (emi.vex.second.w)
logOpSize = 3; // 64 bit operand size
else if (emi.vex.second.pp == 1)
logOpSize = altOp;
else
logOpSize = defOp;
//Set the actual op size
emi.opSize = 1 << logOpSize;
//Figure out the effective address size. This can be overriden to
//a fixed value at the decoder level.
int logAddrSize;
if(emi.legacy.addr)
logAddrSize = altAddr;
else
logAddrSize = defAddr;
//Set the actual address size
emi.addrSize = 1 << logAddrSize;
//Figure out the effective stack width. This can be overriden to
//a fixed value at the decoder level.
emi.stackSize = 1 << stack;
//Figure out how big of an immediate we'll retreive based
//on the opcode.
const uint8_t opcode = emi.opcode.op;
if (emi.vex.zero == 0xc5 || emi.vex.zero == 0xc4) {
int immType = immTable[opcode];
// Assume 64-bit mode;
immediateSize = SizeTypeToSize[2][immType];
}
if (opcode == 0x77) {
instDone = true;
return ResetState;
}
return ModRMState;
}
//Get the ModRM byte and determine what displacement, if any, there is.
//Also determine whether or not to get the SIB byte, displacement, or
//immediate next.
Decoder::State
Decoder::doModRMState(uint8_t nextByte)
{
State nextState = ErrorState;
ModRM modRM = nextByte;
DPRINTF(Decoder, "Found modrm byte %#x.\n", nextByte);
if (defOp == 1) {
//figure out 16 bit displacement size
if ((modRM.mod == 0 && modRM.rm == 6) || modRM.mod == 2)
displacementSize = 2;
else if (modRM.mod == 1)
displacementSize = 1;
else
displacementSize = 0;
} else {
//figure out 32/64 bit displacement size
if ((modRM.mod == 0 && modRM.rm == 5) || modRM.mod == 2)
displacementSize = 4;
else if (modRM.mod == 1)
displacementSize = 1;
else
displacementSize = 0;
}
// The "test" instruction in group 3 needs an immediate, even though
// the other instructions with the same actual opcode don't.
if (emi.opcode.type == OneByteOpcode && (modRM.reg & 0x6) == 0) {
if (emi.opcode.op == 0xF6)
immediateSize = 1;
else if (emi.opcode.op == 0xF7)
immediateSize = (emi.opSize == 8) ? 4 : emi.opSize;
}
//If there's an SIB, get that next.
//There is no SIB in 16 bit mode.
if (modRM.rm == 4 && modRM.mod != 3) {
// && in 32/64 bit mode)
nextState = SIBState;
} else if(displacementSize) {
nextState = DisplacementState;
} else if(immediateSize) {
nextState = ImmediateState;
} else {
instDone = true;
nextState = ResetState;
}
//The ModRM byte is consumed no matter what
consumeByte();
emi.modRM = modRM;
return nextState;
}
//Get the SIB byte. We don't do anything with it at this point, other
//than storing it in the ExtMachInst. Determine if we need to get a
//displacement or immediate next.
Decoder::State
Decoder::doSIBState(uint8_t nextByte)
{
State nextState = ErrorState;
emi.sib = nextByte;
DPRINTF(Decoder, "Found SIB byte %#x.\n", nextByte);
consumeByte();
if (emi.modRM.mod == 0 && emi.sib.base == 5)
displacementSize = 4;
if (displacementSize) {
nextState = DisplacementState;
} else if(immediateSize) {
nextState = ImmediateState;
} else {
instDone = true;
nextState = ResetState;
}
return nextState;
}
//Gather up the displacement, or at least as much of it
//as we can get.
Decoder::State
Decoder::doDisplacementState()
{
State nextState = ErrorState;
getImmediate(immediateCollected,
emi.displacement,
displacementSize);
DPRINTF(Decoder, "Collecting %d byte displacement, got %d bytes.\n",
displacementSize, immediateCollected);
if(displacementSize == immediateCollected) {
//Reset this for other immediates.
immediateCollected = 0;
//Sign extend the displacement
switch(displacementSize)
{
case 1:
emi.displacement = sext<8>(emi.displacement);
break;
case 2:
emi.displacement = sext<16>(emi.displacement);
break;
case 4:
emi.displacement = sext<32>(emi.displacement);
break;
default:
panic("Undefined displacement size!\n");
}
DPRINTF(Decoder, "Collected displacement %#x.\n",
emi.displacement);
if(immediateSize) {
nextState = ImmediateState;
} else {
instDone = true;
nextState = ResetState;
}
emi.dispSize = displacementSize;
}
else
nextState = DisplacementState;
return nextState;
}
//Gather up the immediate, or at least as much of it
//as we can get
Decoder::State
Decoder::doImmediateState()
{
State nextState = ErrorState;
getImmediate(immediateCollected,
emi.immediate,
immediateSize);
DPRINTF(Decoder, "Collecting %d byte immediate, got %d bytes.\n",
immediateSize, immediateCollected);
if(immediateSize == immediateCollected)
{
//Reset this for other immediates.
immediateCollected = 0;
//XXX Warning! The following is an observed pattern and might
//not always be true!
//Instructions which use 64 bit operands but 32 bit immediates
//need to have the immediate sign extended to 64 bits.
//Instructions which use true 64 bit immediates won't be
//affected, and instructions that use true 32 bit immediates
//won't notice.
switch(immediateSize)
{
case 4:
emi.immediate = sext<32>(emi.immediate);
break;
case 1:
emi.immediate = sext<8>(emi.immediate);
}
DPRINTF(Decoder, "Collected immediate %#x.\n",
emi.immediate);
instDone = true;
nextState = ResetState;
}
else
nextState = ImmediateState;
return nextState;
}
Decoder::InstBytes Decoder::dummy;
Decoder::InstCacheMap Decoder::instCacheMap;
StaticInstPtr
Decoder::decode(ExtMachInst mach_inst, Addr addr)
{
DecodeCache::InstMap::iterator iter = instMap->find(mach_inst);
if (iter != instMap->end())
return iter->second;
StaticInstPtr si = decodeInst(mach_inst);
(*instMap)[mach_inst] = si;
return si;
}
StaticInstPtr
Decoder::decode(PCState &nextPC)
{
if (!instDone)
return NULL;
instDone = false;
updateNPC(nextPC);
StaticInstPtr &si = instBytes->si;
if (si)
return si;
// We didn't match in the AddrMap, but we still populated an entry. Fix
// up its byte masks.
const int chunkSize = sizeof(MachInst);
instBytes->lastOffset = offset;
Addr firstBasePC = basePC - (instBytes->chunks.size() - 1) * chunkSize;
Addr firstOffset = origPC - firstBasePC;
Addr totalSize = instBytes->lastOffset - firstOffset +
(instBytes->chunks.size() - 1) * chunkSize;
int start = firstOffset;
instBytes->masks.clear();
while (totalSize) {
int end = start + totalSize;
end = (chunkSize < end) ? chunkSize : end;
int size = end - start;
int idx = instBytes->masks.size();
MachInst maskVal = mask(size * 8) << (start * 8);
assert(maskVal);
instBytes->masks.push_back(maskVal);
instBytes->chunks[idx] &= instBytes->masks[idx];
totalSize -= size;
start = 0;
}
si = decode(emi, origPC);
return si;
}
}