gem5/src/gpu-compute/gpu_dyn_inst.hh
Tony Gutierrez b63eb1302b gpu-compute, hsail: pass GPUDynInstPtr to getRegisterIndex()
for HSAIL an operand's indices into the register files may be calculated
trivially, because the operands are always read from a register file, or are
an immediate.

for machine ISA, however, an op selector may specify special registers, or
may specify special SGPRs with an alias op selector value. the location of
some of the special registers values are dependent on the size of the RF
in some cases. here we add a way for the underlying getRegisterIndex()
method to know about the size of the RFs, so that it may find the relative
positions of the special register values.
2016-10-26 22:47:49 -04:00

461 lines
13 KiB
C++

/*
* Copyright (c) 2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* For use for simulation and test purposes only
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author: Anthony Gutierrez
*/
#ifndef __GPU_DYN_INST_HH__
#define __GPU_DYN_INST_HH__
#include <cstdint>
#include <string>
#include "enums/MemType.hh"
#include "enums/StorageClassType.hh"
#include "gpu-compute/compute_unit.hh"
#include "gpu-compute/gpu_exec_context.hh"
class GPUStaticInst;
template<typename T>
class AtomicOpAnd : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpAnd(T _a) : a(_a) { }
void execute(T *b) { *b &= a; }
};
template<typename T>
class AtomicOpOr : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpOr(T _a) : a(_a) { }
void execute(T *b) { *b |= a; }
};
template<typename T>
class AtomicOpXor : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpXor(T _a) : a(_a) {}
void execute(T *b) { *b ^= a; }
};
template<typename T>
class AtomicOpCAS : public TypedAtomicOpFunctor<T>
{
public:
T c;
T s;
ComputeUnit *computeUnit;
AtomicOpCAS(T _c, T _s, ComputeUnit *compute_unit)
: c(_c), s(_s), computeUnit(compute_unit) { }
void
execute(T *b)
{
computeUnit->numCASOps++;
if (*b == c) {
*b = s;
} else {
computeUnit->numFailedCASOps++;
}
if (computeUnit->xact_cas_mode) {
computeUnit->xactCasLoadMap.clear();
}
}
};
template<typename T>
class AtomicOpExch : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpExch(T _a) : a(_a) { }
void execute(T *b) { *b = a; }
};
template<typename T>
class AtomicOpAdd : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpAdd(T _a) : a(_a) { }
void execute(T *b) { *b += a; }
};
template<typename T>
class AtomicOpSub : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpSub(T _a) : a(_a) { }
void execute(T *b) { *b -= a; }
};
template<typename T>
class AtomicOpInc : public TypedAtomicOpFunctor<T>
{
public:
AtomicOpInc() { }
void execute(T *b) { *b += 1; }
};
template<typename T>
class AtomicOpDec : public TypedAtomicOpFunctor<T>
{
public:
AtomicOpDec() {}
void execute(T *b) { *b -= 1; }
};
template<typename T>
class AtomicOpMax : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpMax(T _a) : a(_a) { }
void
execute(T *b)
{
if (a > *b)
*b = a;
}
};
template<typename T>
class AtomicOpMin : public TypedAtomicOpFunctor<T>
{
public:
T a;
AtomicOpMin(T _a) : a(_a) {}
void
execute(T *b)
{
if (a < *b)
*b = a;
}
};
typedef enum
{
VT_32,
VT_64,
} vgpr_type;
class GPUDynInst : public GPUExecContext
{
public:
GPUDynInst(ComputeUnit *_cu, Wavefront *_wf, GPUStaticInst *static_inst,
uint64_t instSeqNum);
~GPUDynInst();
void execute(GPUDynInstPtr gpuDynInst);
int numSrcRegOperands();
int numDstRegOperands();
int getNumOperands();
bool isVectorRegister(int operandIdx);
bool isScalarRegister(int operandIdx);
bool isCondRegister(int operandIdx);
int getRegisterIndex(int operandIdx, GPUDynInstPtr gpuDynInst);
int getOperandSize(int operandIdx);
bool isDstOperand(int operandIdx);
bool isSrcOperand(int operandIdx);
const std::string &disassemble() const;
uint64_t seqNum() const;
Enums::StorageClassType executedAs();
// The address of the memory operation
std::vector<Addr> addr;
Addr pAddr;
// The data to get written
uint8_t *d_data;
// Additional data (for atomics)
uint8_t *a_data;
// Additional data (for atomics)
uint8_t *x_data;
// The execution mask
VectorMask exec_mask;
// The memory type (M_U32, M_S32, ...)
Enums::MemType m_type;
// The equivalency class
int equiv;
// The return VGPR type (VT_32 or VT_64)
vgpr_type v_type;
// Number of VGPR's accessed (1, 2, or 4)
int n_reg;
// The return VGPR index
int dst_reg;
// There can be max 4 dest regs>
int dst_reg_vec[4];
// SIMD where the WF of the memory instruction has been mapped to
int simdId;
// unique id of the WF where the memory instruction belongs to
int wfDynId;
// The kernel id of the requesting wf
int kern_id;
// The CU id of the requesting wf
int cu_id;
// HW slot id where the WF is mapped to inside a SIMD unit
int wfSlotId;
// execution pipeline id where the memory instruction has been scheduled
int pipeId;
// The execution time of this operation
Tick time;
// The latency of this operation
WaitClass latency;
// A list of bank conflicts for the 4 cycles.
uint32_t bc[4];
// A pointer to ROM
uint8_t *rom;
// The size of the READONLY segment
int sz_rom;
// Initiate the specified memory operation, by creating a
// memory request and sending it off to the memory system.
void initiateAcc(GPUDynInstPtr gpuDynInst);
// Complete the specified memory operation, by writing
// value back to the RF in the case of a load or atomic
// return or, in the case of a store, we do nothing
void completeAcc(GPUDynInstPtr gpuDynInst);
void updateStats();
GPUStaticInst* staticInstruction() { return _staticInst; }
bool isALU() const;
bool isBranch() const;
bool isNop() const;
bool isReturn() const;
bool isUnconditionalJump() const;
bool isSpecialOp() const;
bool isWaitcnt() const;
bool isBarrier() const;
bool isMemFence() const;
bool isMemRef() const;
bool isFlat() const;
bool isLoad() const;
bool isStore() const;
bool isAtomic() const;
bool isAtomicNoRet() const;
bool isAtomicRet() const;
bool isScalar() const;
bool readsSCC() const;
bool writesSCC() const;
bool readsVCC() const;
bool writesVCC() const;
bool isAtomicAnd() const;
bool isAtomicOr() const;
bool isAtomicXor() const;
bool isAtomicCAS() const;
bool isAtomicExch() const;
bool isAtomicAdd() const;
bool isAtomicSub() const;
bool isAtomicInc() const;
bool isAtomicDec() const;
bool isAtomicMax() const;
bool isAtomicMin() const;
bool isArgLoad() const;
bool isGlobalMem() const;
bool isLocalMem() const;
bool isArgSeg() const;
bool isGlobalSeg() const;
bool isGroupSeg() const;
bool isKernArgSeg() const;
bool isPrivateSeg() const;
bool isReadOnlySeg() const;
bool isSpillSeg() const;
bool isWorkitemScope() const;
bool isWavefrontScope() const;
bool isWorkgroupScope() const;
bool isDeviceScope() const;
bool isSystemScope() const;
bool isNoScope() const;
bool isRelaxedOrder() const;
bool isAcquire() const;
bool isRelease() const;
bool isAcquireRelease() const;
bool isNoOrder() const;
bool isGloballyCoherent() const;
bool isSystemCoherent() const;
/*
* Loads/stores/atomics may have acquire/release semantics associated
* withthem. Some protocols want to see the acquire/release as separate
* requests from the load/store/atomic. We implement that separation
* using continuations (i.e., a function pointer with an object associated
* with it). When, for example, the front-end generates a store with
* release semantics, we will first issue a normal store and set the
* continuation in the GPUDynInst to a function that generate a
* release request. That continuation will be called when the normal
* store completes (in ComputeUnit::DataPort::recvTimingResponse). The
* continuation will be called in the context of the same GPUDynInst
* that generated the initial store.
*/
std::function<void(GPUStaticInst*, GPUDynInstPtr)> execContinuation;
// when true, call execContinuation when response arrives
bool useContinuation;
template<typename c0> AtomicOpFunctor*
makeAtomicOpFunctor(c0 *reg0, c0 *reg1)
{
if (isAtomicAnd()) {
return new AtomicOpAnd<c0>(*reg0);
} else if (isAtomicOr()) {
return new AtomicOpOr<c0>(*reg0);
} else if (isAtomicXor()) {
return new AtomicOpXor<c0>(*reg0);
} else if (isAtomicCAS()) {
return new AtomicOpCAS<c0>(*reg0, *reg1, cu);
} else if (isAtomicExch()) {
return new AtomicOpExch<c0>(*reg0);
} else if (isAtomicAdd()) {
return new AtomicOpAdd<c0>(*reg0);
} else if (isAtomicSub()) {
return new AtomicOpSub<c0>(*reg0);
} else if (isAtomicInc()) {
return new AtomicOpInc<c0>();
} else if (isAtomicDec()) {
return new AtomicOpDec<c0>();
} else if (isAtomicMax()) {
return new AtomicOpMax<c0>(*reg0);
} else if (isAtomicMin()) {
return new AtomicOpMin<c0>(*reg0);
} else {
fatal("Unrecognized atomic operation");
}
}
void
setRequestFlags(Request *req, bool setMemOrder=true)
{
// currently these are the easy scopes to deduce
if (isPrivateSeg()) {
req->setMemSpaceConfigFlags(Request::PRIVATE_SEGMENT);
} else if (isSpillSeg()) {
req->setMemSpaceConfigFlags(Request::SPILL_SEGMENT);
} else if (isGlobalSeg()) {
req->setMemSpaceConfigFlags(Request::GLOBAL_SEGMENT);
} else if (isReadOnlySeg()) {
req->setMemSpaceConfigFlags(Request::READONLY_SEGMENT);
} else if (isGroupSeg()) {
req->setMemSpaceConfigFlags(Request::GROUP_SEGMENT);
} else if (isFlat()) {
// TODO: translate to correct scope
assert(false);
} else {
fatal("%s has bad segment type\n", disassemble());
}
if (isWavefrontScope()) {
req->setMemSpaceConfigFlags(Request::SCOPE_VALID |
Request::WAVEFRONT_SCOPE);
} else if (isWorkgroupScope()) {
req->setMemSpaceConfigFlags(Request::SCOPE_VALID |
Request::WORKGROUP_SCOPE);
} else if (isDeviceScope()) {
req->setMemSpaceConfigFlags(Request::SCOPE_VALID |
Request::DEVICE_SCOPE);
} else if (isSystemScope()) {
req->setMemSpaceConfigFlags(Request::SCOPE_VALID |
Request::SYSTEM_SCOPE);
} else if (!isNoScope() && !isWorkitemScope()) {
fatal("%s has bad scope type\n", disassemble());
}
if (setMemOrder) {
// set acquire and release flags
if (isAcquire()) {
req->setFlags(Request::ACQUIRE);
} else if (isRelease()) {
req->setFlags(Request::RELEASE);
} else if (isAcquireRelease()) {
req->setFlags(Request::ACQUIRE | Request::RELEASE);
} else if (!isNoOrder()) {
fatal("%s has bad memory order\n", disassemble());
}
}
// set atomic type
// currently, the instruction genenerator only produces atomic return
// but a magic instruction can produce atomic no return
if (isAtomicRet()) {
req->setFlags(Request::ATOMIC_RETURN_OP);
} else if (isAtomicNoRet()) {
req->setFlags(Request::ATOMIC_NO_RETURN_OP);
}
}
// Map returned packets and the addresses they satisfy with which lane they
// were requested from
typedef std::unordered_map<Addr, std::vector<int>> StatusVector;
StatusVector memStatusVector;
// Track the status of memory requests per lane, a bit per lane
VectorMask statusBitVector;
// for ld_v# or st_v#
std::vector<int> statusVector;
std::vector<int> tlbHitLevel;
private:
GPUStaticInst *_staticInst;
uint64_t _seqNum;
};
#endif // __GPU_DYN_INST_HH__