and python code into m5 to allow swig an python code to
easily added by any SConscript instead of just the one in
src/python. This provides SwigSource and PySource for
adding new files to m5 (similar to Source for C++). Also
provides SimObject for including files that contain SimObject
information and build the m5.objects __init__.py file.
--HG--
extra : convert_revision : 38b50a0629846ef451ed02f96fe3633947df23eb
or automatically do Split(). It isn't used anywhere, and
isn't very consistent with the python features that are
about to be added. Do accept SCons.Node.FS.File arguments
though.
--HG--
extra : convert_revision : 0f3bb0e9e6806490330eea59a104013042b4dd49
unproxy() needs to return a new object otherwise all
instances will use the same value. This fix is more
or less unique to NextEthernetAddr because its use of
the proxy stuff is a bit different than everything else.
--HG--
extra : convert_revision : 2ce452e37d00b9ba76b6abfaec0ad2e0073920d7
1. Microops are created. These are StaticInsts use templates to provide a basic form of polymorphism without having to make the microassembler smarter.
2. An instruction class is created which has a "templated" microcode program as it's docstring. The template parameters are refernced with ^ following by a number.
3. An instruction in the decoder references an instruction template using it's mnemonic. The parameters to it's format end up replacing the placeholders. These parameters describe a source for an operand which could be memory, a register, or an immediate. It it's a register, the register index is used. If it's memory, eventually a load/store will be pre/postpended to the instruction template and it's destination register will be used in place of the ^. If it's an immediate, the immediate is used. Some operand types, specifically those that come from the ModRM byte, need to be decoded further into memory vs. register versions. This is accomplished by making the decode_block text for these instructions another case statement based off ModRM.
4. Once all of the template parameters have been handled, the instruction goes throw the microcode assembler which resolves labels and creates a list of python op objects. If an operand is a register, it uses a % prefix, an immediate uses $, and a label uses @. If the operand is just letters, numbers, and underscores, it can appear immediately after the prefix. If it's not, it can be encolsed in non nested {}s.
5. If there is a single "op" object (which corresponds to a single microop) the decoder is set up to return it directly. If not, a macroop wrapper is created around it.
In the future, I'm considering seperating the operand type specialization from the template substitution step. A problem this introduces is that either the template arguments need to be kept around for the specialization step, or they need to be re-extracted. Re-extraction might be the way to go so that the operand formats can be coded directly into the micro assembler template without having to pass them in as parameters. I don't know if that's actually useful, though.
src/arch/x86/isa/decoder/one_byte_opcodes.isa:
src/arch/x86/isa/microasm.isa:
src/arch/x86/isa/microops/microops.isa:
src/arch/x86/isa/operands.isa:
src/arch/x86/isa/microops/base.isa:
Implemented polymorphic microops and changed around the microcode assembler syntax.
--HG--
extra : convert_revision : e341f7b8ea9350a31e586a3d33250137e5954f43
src/cpu/o3/alpha/cpu_impl.hh:
Pass ISA-specific O3 CPU to FullO3CPU as a constructor parameter instead of using setCPU functions.
--HG--
extra : convert_revision : 74f4b1f5fb6f95a56081f367cce7ff44acb5688a
In this way a MemoryObject can keep a functional port around and give it to anyone who wants to do functional accesses rather
than creating a new one each time.
src/mem/bus.cc:
src/mem/bus.hh:
src/mem/cache/cache_impl.hh:
only keep around one func port we give to anyone who wants it. Otherwise we can run out of port ids reasonably quickly if
a lot of functional accesses are happening (e.g. remote debugging, dprintk, etc)
--HG--
extra : convert_revision : 6a9e3e96f51cedaab6de1b36cf317203899a3716