Commit graph

9 commits

Author SHA1 Message Date
Andreas Hansson
e23e3bea8b mem: Address mapping with fine-grained channel interleaving
This patch adds an address mapping scheme where the channel
interleaving takes place on a cache line granularity. It is similar to
the existing RaBaChCo that interleaves on a DRAM page, but should give
higher performance when there is less locality in the address
stream.
2013-04-22 13:20:34 -04:00
Andreas Hansson
e61799aa7c mem: More descriptive enum names for address mapping
This patch changes the slightly ambigious names used for the address
mapping scheme to be more descriptive, and actually spell out what
they do. With this patch we also open up for adding more flavours of
open- and close-type mappings, i.e. interleaving across channels with
the open map.
2013-04-22 13:20:33 -04:00
Andreas Hansson
a35d3ff167 mem: Add a WideIO DRAM configuration
This patch adds a WideIO 200 MHz configuration that can be used as a
baseline to compare with DDRx and LPDDRx. Note that it is a single
channel and that it should be replicated 4 times. It is based on
publically available information and attempts to capture an envisioned
8 Gbit single-die part (i.e. without TSVs).
2013-04-22 13:20:33 -04:00
Andreas Hansson
da5356ccce mem: Add a method to build multi-channel DRAM configurations
This patch adds a class method that allows easy creation of
channel-interleaved multi-channel DRAM configurations. It is enabled
by a class method to allow customisation of the class independent of
the channel configuration. For example, the user can create a MyDDR
subclass of e.g. SimpleDDR3, and then create a four-channel
configuration of the subclass by calling MyDDR.makeMultiChannel(4,
mem_start, mem_size).
2013-03-01 13:20:32 -05:00
Andreas Hansson
3ba131f4d5 mem: Add support for multi-channel DRAM configurations
This patch adds support for multi-channel instances of the DRAM
controller model by stripping away the channel bits in the address
decoding. The patch relies on the availiability of address
interleaving and, at this time, it is up to the user to configure the
interleaving appropriately. At the moment it is assumed that the
channel interleaving bits are immediately following the column bits
(smallest sensible interleaving). Convenience methods for building
multi-channel configurations will be added later.
2013-03-01 13:20:22 -05:00
Andreas Hansson
c4898b15bc mem: Add DDR3 and LPDDR2 DRAM controller configurations
This patch moves the default DRAM parameters from the SimpleDRAM class
to two different subclasses, one for DDR3 and one for LPDDR2. More can
be added as we go forward.

The regressions that previously used the SimpleDRAM are now using
SimpleDDR3 as this is the most similar configuration.
2013-01-31 07:49:14 -05:00
Ani Udipi
eaa37e611f mem: Add tTAW and tFAW to the SimpleDRAM model
This patch adds two additional scheduling constraints to the DRAM
controller model, to constrain the activation rate. The two metrics
are determine the size of the activation window in terms of the number
of activates and the minimum time required for that number of
activates. This maps to current DDRx, LPDDRx and WIOx standards that
have either tFAW (4 activate window) or tTAW (2 activate window)
scheduling constraints.
2013-01-31 07:49:14 -05:00
Andreas Sandberg
c0ab52799c sim: Include object header files in SWIG interfaces
When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.

This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
2012-11-02 11:32:01 -05:00
Andreas Hansson
3b6a143ec5 DRAM: Introduce SimpleDRAM to capture a high-level controller
This patch introduces a high-level model of a DRAM controller, with a
basic read/write buffer structure, a selectable and customisable
arbiter, a few address mapping options, and the basic DRAM timing
constraints. The parameters make it possible to turn this model into
any desired DDRx/LPDDRx/WideIOx memory controller.

The intention is not to be cycle accurate or capture every aspect of a
DDR DRAM interface, but rather to enable exploring of the high-level
knobs with a good simulation speed. Thus, contrary to e.g. DRAMSim
this module emphasizes simulation speed with a good-enough accuracy.

This module is merely a starting point, and there are plenty additions
and improvements to come. A notable addition is the support for
address-striping in the bus to enable a multi-channel DRAM
controller. Also note that there are still a few "todo's" in the code
base that will be addressed as we go along.

A follow-up patch will add basic performance regressions that use the
traffic generator to exercise a few well-defined corner cases.
2012-09-21 11:48:13 -04:00