When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.
This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
This patch addresses a previously highlighted issue with the default
latencies used for PIO and PCI devices. The values are merely educated
guesses and might not represent the particular system you want to
model. However, the values in this patch are definitely far more
realistic than the previous ones.
In i8254xGBe, the writeConfig method is updated to use configDelay
instead of pioDelay.
A follow-up patch will update the regression stats.
This patch removes the overloading of the parameter, which seems both
redundant, and possibly incorrect.
The PciConfigAll now also uses a Param.Latency rather than a
Param.Tick. For backwards compatibility it still sets the pio_latency
to 1 tick. All the comments have also been updated to not state that
it is in simticks when it is not necessarily the case.
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.
Not all objects need a platform pointer, and having one creates a dependence
on their being a platform object. This change removes the platform pointer to
from the base device object and moves it into subclasses that actually need
it.