this patch adds an ordered response buffer to the GM pipeline
to ensure in-order data delivery. the buffer is implemented as
a stl ordered map, which sorts the request in program order by
using their sequence ID. when requests return to the GM pipeline
they are marked as done. only the oldest request may be serviced
from the ordered buffer, and only if is marked as done.
the FIFO response buffers are kept and used in OoO delivery mode
Continue along the same line as the recent patch that made the
Ruby-related config scripts Python packages and make also the
configs/common directory a package.
All affected config scripts are updated (hopefully).
Note that this change makes it apparent that the current organisation
and naming of the config directory and its subdirectories is rather
chaotic. We mix scripts that are directly invoked with scripts that
merely contain convenience functions. While it is not addressed in
this patch we should follow up with a re-organisation of the
config structure, and renaming of some of the packages.
This patch moves the addition of network options into the Ruby module
to avoid the regressions all having to add it explicitly. Doing this
exposes an issue in our current config system though, namely the fact
that addtoPath is relative to the Python script being executed. Since
both example and regression scripts use the Ruby module we would end
up with two different (relative) paths being added. Instead we take a
first step at turning the config modules into Python packages, simply
by adding a __init__.py in the configs/ruby, configs/topologies and
configs/network subdirectories.
As a result, we can now add the top-level configs directory to the
Python search path, and then use the package names in the various
modules. The example scripts are also updated, and the messy
path-deducing variations in the scripts are unified.
Add support for using KVM to accelerate APU simulations. The intended use
case is to fast-forward through runtime initialization until the first
kernel launch.
Eliminate the VSZ constant that defined the Wavefront size (in numbers of work
items); replaced it with a parameter in the GPU.py configuration script.
Changed all data structures dependent on the Wavefront size to be dynamically
sized. Legal values of Wavefront size are 16, 32, 64 for now and checked at
initialization time.