sim: Decouple draining from the SimObject hierarchy

Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.

This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.

While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.

A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
This commit is contained in:
Andreas Sandberg 2015-07-07 09:51:05 +01:00
parent d5f5fbb855
commit f16c0a4a90
31 changed files with 243 additions and 332 deletions

View file

@ -141,12 +141,6 @@ Stage2MMU::Stage2Translation::finish(const Fault &_fault, RequestPtr req,
} }
} }
unsigned int
Stage2MMU::drain(DrainManager *dm)
{
return port.drain(dm);
}
ArmISA::Stage2MMU * ArmISA::Stage2MMU *
ArmStage2MMUParams::create() ArmStage2MMUParams::create()
{ {

View file

@ -112,8 +112,6 @@ class Stage2MMU : public SimObject
*/ */
DmaPort& getPort() { return port; } DmaPort& getPort() { return port; }
unsigned int drain(DrainManager *dm);
Fault readDataUntimed(ThreadContext *tc, Addr oVAddr, Addr descAddr, Fault readDataUntimed(ThreadContext *tc, Addr oVAddr, Addr descAddr,
uint8_t *data, int numBytes, Request::Flags flags, bool isFunctional); uint8_t *data, int numBytes, Request::Flags flags, bool isFunctional);
Fault readDataTimed(ThreadContext *tc, Addr descAddr, Fault readDataTimed(ThreadContext *tc, Addr descAddr,

View file

@ -2319,26 +2319,16 @@ UFSHostDevice::unserialize(CheckpointIn &cp)
unsigned int unsigned int
UFSHostDevice::drain(DrainManager *dm) UFSHostDevice::drain(DrainManager *dm)
{ {
unsigned int count = 0;
// check pio, dma port, and doorbells
count = pioPort.drain(dm) + dmaPort.drain(dm);
if (UFSHCIMem.TRUTRLDBR) { if (UFSHCIMem.TRUTRLDBR) {
count += 1;
drainManager = dm; drainManager = dm;
} else {
DPRINTF(UFSHostDevice, "UFSHostDevice in drained state\n");
}
if (count) {
DPRINTF(UFSHostDevice, "UFSDevice is draining...\n"); DPRINTF(UFSHostDevice, "UFSDevice is draining...\n");
setDrainState(DrainState::Draining); setDrainState(DrainState::Draining);
return 1;
} else { } else {
DPRINTF(UFSHostDevice, "UFSDevice drained\n"); DPRINTF(UFSHostDevice, "UFSDevice drained\n");
setDrainState(DrainState::Drained); setDrainState(DrainState::Drained);
return 0;
} }
return count;
} }
/** /**

View file

@ -650,29 +650,10 @@ CopyEngine::CopyEngineChannel::drain(DrainManager *dm)
{ {
if (nextState == Idle || ce->getDrainState() != DrainState::Running) if (nextState == Idle || ce->getDrainState() != DrainState::Running)
return 0; return 0;
unsigned int count = 1;
count += cePort.drain(dm);
DPRINTF(Drain, "CopyEngineChannel not drained\n"); DPRINTF(Drain, "CopyEngineChannel not drained\n");
this->drainManager = dm; this->drainManager = dm;
return count; return 1;
}
unsigned int
CopyEngine::drain(DrainManager *dm)
{
unsigned int count;
count = pioPort.drain(dm) + dmaPort.drain(dm) + configPort.drain(dm);
for (int x = 0;x < chan.size(); x++)
count += chan[x]->drain(dm);
if (count)
setDrainState(DrainState::Draining);
else
setDrainState(DrainState::Drained);
DPRINTF(Drain, "CopyEngine not drained\n");
return count;
} }
void void
@ -755,15 +736,6 @@ CopyEngine::CopyEngineChannel::restartStateMachine()
} }
} }
void
CopyEngine::drainResume()
{
Drainable::drainResume();
for (int x = 0;x < chan.size(); x++)
chan[x]->drainResume();
}
void void
CopyEngine::CopyEngineChannel::drainResume() CopyEngine::CopyEngineChannel::drainResume()
{ {

View file

@ -207,9 +207,6 @@ class CopyEngine : public PciDevice
void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE; void serialize(CheckpointOut &cp) const M5_ATTR_OVERRIDE;
void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE; void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
unsigned int drain(DrainManager *drainManger);
void drainResume();
}; };
#endif //__DEV_COPY_ENGINE_HH__ #endif //__DEV_COPY_ENGINE_HH__

View file

@ -125,17 +125,6 @@ DmaDevice::init()
PioDevice::init(); PioDevice::init();
} }
unsigned int
DmaDevice::drain(DrainManager *dm)
{
unsigned int count = pioPort.drain(dm) + dmaPort.drain(dm);
if (count)
setDrainState(DrainState::Draining);
else
setDrainState(DrainState::Drained);
return count;
}
unsigned int unsigned int
DmaPort::drain(DrainManager *dm) DmaPort::drain(DrainManager *dm)
{ {

View file

@ -51,7 +51,7 @@
#include "sim/drain.hh" #include "sim/drain.hh"
#include "sim/system.hh" #include "sim/system.hh"
class DmaPort : public MasterPort class DmaPort : public MasterPort, public Drainable
{ {
private: private:
@ -176,8 +176,6 @@ class DmaDevice : public PioDevice
virtual void init(); virtual void init();
unsigned int drain(DrainManager *drainManger);
unsigned int cacheBlockSize() const { return sys->cacheLineSize(); } unsigned int cacheBlockSize() const { return sys->cacheLineSize(); }
virtual BaseMasterPort &getMasterPort(const std::string &if_name, virtual BaseMasterPort &getMasterPort(const std::string &if_name,

View file

@ -2058,8 +2058,7 @@ IGbE::restartClock()
unsigned int unsigned int
IGbE::drain(DrainManager *dm) IGbE::drain(DrainManager *dm)
{ {
unsigned int count; unsigned int count(0);
count = pioPort.drain(dm) + dmaPort.drain(dm);
if (rxDescCache.hasOutstandingEvents() || if (rxDescCache.hasOutstandingEvents() ||
txDescCache.hasOutstandingEvents()) { txDescCache.hasOutstandingEvents()) {
count++; count++;

View file

@ -93,18 +93,6 @@ PioDevice::getSlavePort(const std::string &if_name, PortID idx)
return MemObject::getSlavePort(if_name, idx); return MemObject::getSlavePort(if_name, idx);
} }
unsigned int
PioDevice::drain(DrainManager *dm)
{
unsigned int count;
count = pioPort.drain(dm);
if (count)
setDrainState(DrainState::Draining);
else
setDrainState(DrainState::Drained);
return count;
}
BasicPioDevice::BasicPioDevice(const Params *p, Addr size) BasicPioDevice::BasicPioDevice(const Params *p, Addr size)
: PioDevice(p), pioAddr(p->pio_addr), pioSize(size), : PioDevice(p), pioAddr(p->pio_addr), pioSize(size),
pioDelay(p->pio_latency) pioDelay(p->pio_latency)

View file

@ -125,8 +125,6 @@ class PioDevice : public MemObject
virtual void init(); virtual void init();
unsigned int drain(DrainManager *drainManger);
virtual BaseSlavePort &getSlavePort(const std::string &if_name, virtual BaseSlavePort &getSlavePort(const std::string &if_name,
PortID idx = InvalidPortID); PortID idx = InvalidPortID);

View file

@ -255,18 +255,6 @@ PciDevice::init()
DmaDevice::init(); DmaDevice::init();
} }
unsigned int
PciDevice::drain(DrainManager *dm)
{
unsigned int count;
count = pioPort.drain(dm) + dmaPort.drain(dm) + configPort.drain(dm);
if (count)
setDrainState(DrainState::Draining);
else
setDrainState(DrainState::Drained);
return count;
}
Tick Tick
PciDevice::readConfig(PacketPtr pkt) PciDevice::readConfig(PacketPtr pkt)
{ {

View file

@ -259,8 +259,6 @@ class PciDevice : public DmaDevice
void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE; void unserialize(CheckpointIn &cp) M5_ATTR_OVERRIDE;
virtual unsigned int drain(DrainManager *dm);
virtual BaseSlavePort &getSlavePort(const std::string &if_name, virtual BaseSlavePort &getSlavePort(const std::string &if_name,
PortID idx = InvalidPortID) PortID idx = InvalidPortID)
{ {

17
src/mem/cache/base.cc vendored
View file

@ -775,23 +775,6 @@ BaseCache::regStats()
} }
unsigned int
BaseCache::drain(DrainManager *dm)
{
int count = memSidePort->drain(dm) + cpuSidePort->drain(dm) +
mshrQueue.drain(dm) + writeBuffer.drain(dm);
// Set status
if (count != 0) {
setDrainState(DrainState::Draining);
DPRINTF(Drain, "Cache not drained\n");
return count;
}
setDrainState(DrainState::Drained);
return 0;
}
BaseCache * BaseCache *
BaseCacheParams::create() BaseCacheParams::create()
{ {

View file

@ -593,8 +593,6 @@ class BaseCache : public MemObject
// interesting again. // interesting again.
} }
virtual unsigned int drain(DrainManager *dm);
virtual bool inCache(Addr addr, bool is_secure) const = 0; virtual bool inCache(Addr addr, bool is_secure) const = 0;
virtual bool inMissQueue(Addr addr, bool is_secure) const = 0; virtual bool inMissQueue(Addr addr, bool is_secure) const = 0;

View file

@ -834,20 +834,6 @@ CoherentXBar::forwardFunctional(PacketPtr pkt, PortID exclude_slave_port_id)
} }
} }
unsigned int
CoherentXBar::drain(DrainManager *dm)
{
// sum up the individual layers
unsigned int total = 0;
for (auto l: reqLayers)
total += l->drain(dm);
for (auto l: respLayers)
total += l->drain(dm);
for (auto l: snoopLayers)
total += l->drain(dm);
return total;
}
void void
CoherentXBar::regStats() CoherentXBar::regStats()
{ {

View file

@ -396,8 +396,6 @@ class CoherentXBar : public BaseXBar
virtual ~CoherentXBar(); virtual ~CoherentXBar();
unsigned int drain(DrainManager *dm);
virtual void regStats(); virtual void regStats();
}; };

View file

@ -2169,8 +2169,6 @@ DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
unsigned int unsigned int
DRAMCtrl::drain(DrainManager *dm) DRAMCtrl::drain(DrainManager *dm)
{ {
unsigned int count = port.drain(dm);
// if there is anything in any of our internal queues, keep track // if there is anything in any of our internal queues, keep track
// of that as well // of that as well
if (!(writeQueue.empty() && readQueue.empty() && if (!(writeQueue.empty() && readQueue.empty() &&
@ -2178,7 +2176,6 @@ DRAMCtrl::drain(DrainManager *dm)
DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
" resp: %d\n", writeQueue.size(), readQueue.size(), " resp: %d\n", writeQueue.size(), readQueue.size(),
respQueue.size()); respQueue.size());
++count;
drainManager = dm; drainManager = dm;
// the only part that is not drained automatically over time // the only part that is not drained automatically over time
@ -2186,13 +2183,12 @@ DRAMCtrl::drain(DrainManager *dm)
if (!writeQueue.empty() && !nextReqEvent.scheduled()) { if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
schedule(nextReqEvent, curTick()); schedule(nextReqEvent, curTick());
} }
}
if (count)
setDrainState(DrainState::Draining); setDrainState(DrainState::Draining);
else return 1;
} else {
setDrainState(DrainState::Drained); setDrainState(DrainState::Drained);
return count; return 0;
}
} }
void void

View file

@ -313,18 +313,6 @@ NoncoherentXBar::recvFunctional(PacketPtr pkt, PortID slave_port_id)
masterPorts[dest_id]->sendFunctional(pkt); masterPorts[dest_id]->sendFunctional(pkt);
} }
unsigned int
NoncoherentXBar::drain(DrainManager *dm)
{
// sum up the individual layers
unsigned int total = 0;
for (auto l: reqLayers)
total += l->drain(dm);
for (auto l: respLayers)
total += l->drain(dm);
return total;
}
NoncoherentXBar* NoncoherentXBar*
NoncoherentXBarParams::create() NoncoherentXBarParams::create()
{ {

View file

@ -195,8 +195,6 @@ class NoncoherentXBar : public BaseXBar
virtual ~NoncoherentXBar(); virtual ~NoncoherentXBar();
unsigned int drain(DrainManager *dm);
/** /**
* stats * stats
*/ */

View file

@ -95,8 +95,6 @@ class QueuedSlavePort : public SlavePort
* functional request. */ * functional request. */
bool checkFunctional(PacketPtr pkt) bool checkFunctional(PacketPtr pkt)
{ return respQueue.checkFunctional(pkt); } { return respQueue.checkFunctional(pkt); }
unsigned int drain(DrainManager *dm) { return respQueue.drain(dm); }
}; };
/** /**
@ -166,9 +164,6 @@ class QueuedMasterPort : public MasterPort
return reqQueue.checkFunctional(pkt) || return reqQueue.checkFunctional(pkt) ||
snoopRespQueue.checkFunctional(pkt); snoopRespQueue.checkFunctional(pkt);
} }
unsigned int drain(DrainManager *dm)
{ return reqQueue.drain(dm) + snoopRespQueue.drain(dm); }
}; };
#endif // __MEM_QPORT_HH__ #endif // __MEM_QPORT_HH__

View file

@ -160,15 +160,6 @@ DMASequencer::testDrainComplete()
} }
} }
unsigned int
DMASequencer::getChildDrainCount(DrainManager *dm)
{
int count = 0;
count += slave_port.drain(dm);
DPRINTF(Config, "count after slave port check %d\n", count);
return count;
}
unsigned int unsigned int
DMASequencer::drain(DrainManager *dm) DMASequencer::drain(DrainManager *dm)
{ {
@ -181,11 +172,6 @@ DMASequencer::drain(DrainManager *dm)
DPRINTF(Config, "outstanding count %d\n", outstandingCount()); DPRINTF(Config, "outstanding count %d\n", outstandingCount());
bool need_drain = outstandingCount() > 0; bool need_drain = outstandingCount() > 0;
//
// Also, get the number of child ports that will also need to clear
// their buffered requests before they call drainManager->signalDrainDone()
//
unsigned int child_drain_count = getChildDrainCount(dm);
// Set status // Set status
if (need_drain) { if (need_drain) {
@ -193,12 +179,12 @@ DMASequencer::drain(DrainManager *dm)
DPRINTF(Drain, "DMASequencer not drained\n"); DPRINTF(Drain, "DMASequencer not drained\n");
setDrainState(DrainState::Draining); setDrainState(DrainState::Draining);
return child_drain_count + 1; return 1;
} }
drainManager = NULL; drainManager = NULL;
setDrainState(DrainState::Drained); setDrainState(DrainState::Drained);
return child_drain_count; return 0;
} }
void void

View file

@ -399,31 +399,6 @@ RubyPort::testDrainComplete()
} }
} }
unsigned int
RubyPort::getChildDrainCount(DrainManager *dm)
{
int count = 0;
if (memMasterPort.isConnected()) {
count += memMasterPort.drain(dm);
DPRINTF(Config, "count after pio check %d\n", count);
}
for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
count += (*p)->drain(dm);
DPRINTF(Config, "count after slave port check %d\n", count);
}
for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
p != master_ports.end(); ++p) {
count += (*p)->drain(dm);
DPRINTF(Config, "count after master port check %d\n", count);
}
DPRINTF(Config, "final count %d\n", count);
return count;
}
unsigned int unsigned int
RubyPort::drain(DrainManager *dm) RubyPort::drain(DrainManager *dm)
{ {
@ -438,24 +413,18 @@ RubyPort::drain(DrainManager *dm)
DPRINTF(Config, "outstanding count %d\n", outstandingCount()); DPRINTF(Config, "outstanding count %d\n", outstandingCount());
bool need_drain = outstandingCount() > 0; bool need_drain = outstandingCount() > 0;
//
// Also, get the number of child ports that will also need to clear
// their buffered requests before they call drainManager->signalDrainDone()
//
unsigned int child_drain_count = getChildDrainCount(dm);
// Set status // Set status
if (need_drain) { if (need_drain) {
drainManager = dm; drainManager = dm;
DPRINTF(Drain, "RubyPort not drained\n"); DPRINTF(Drain, "RubyPort not drained\n");
setDrainState(DrainState::Draining); setDrainState(DrainState::Draining);
return child_drain_count + 1; return 1;
} }
drainManager = NULL; drainManager = NULL;
setDrainState(DrainState::Drained); setDrainState(DrainState::Drained);
return child_drain_count; return 0;
} }
void void

View file

@ -193,8 +193,6 @@ class RubyPort : public MemObject
retryList.push_back(port); retryList.push_back(port);
} }
unsigned int getChildDrainCount(DrainManager *dm);
PioMasterPort pioMasterPort; PioMasterPort pioMasterPort;
PioSlavePort pioSlavePort; PioSlavePort pioSlavePort;
MemMasterPort memMasterPort; MemMasterPort memMasterPort;

View file

@ -467,8 +467,6 @@ class BaseXBar : public MemObject
BaseSlavePort& getSlavePort(const std::string& if_name, BaseSlavePort& getSlavePort(const std::string& if_name,
PortID idx = InvalidPortID); PortID idx = InvalidPortID);
virtual unsigned int drain(DrainManager *dm) = 0;
virtual void regStats(); virtual void regStats();
}; };

View file

@ -66,6 +66,8 @@ _memory_modes = {
"atomic_noncaching" : objects.params.atomic_noncaching, "atomic_noncaching" : objects.params.atomic_noncaching,
} }
_drain_manager = internal.drain.DrainManager.instance()
# The final hook to generate .ini files. Called from the user script # The final hook to generate .ini files. Called from the user script
# once the config is built. # once the config is built.
def instantiate(ckpt_dir=None): def instantiate(ckpt_dir=None):
@ -129,10 +131,10 @@ def instantiate(ckpt_dir=None):
# Restore checkpoint (if any) # Restore checkpoint (if any)
if ckpt_dir: if ckpt_dir:
_drain_manager.preCheckpointRestore()
ckpt = internal.core.getCheckpoint(ckpt_dir) ckpt = internal.core.getCheckpoint(ckpt_dir)
internal.core.unserializeGlobals(ckpt); internal.core.unserializeGlobals(ckpt);
for obj in root.descendants(): obj.loadState(ckpt) for obj in root.descendants(): obj.loadState(ckpt)
need_resume.append(root)
else: else:
for obj in root.descendants(): obj.initState() for obj in root.descendants(): obj.initState()
@ -140,10 +142,9 @@ def instantiate(ckpt_dir=None):
# a checkpoint, If so, this call will shift them to be at a valid time. # a checkpoint, If so, this call will shift them to be at a valid time.
updateStatEvents() updateStatEvents()
need_resume = []
need_startup = True need_startup = True
def simulate(*args, **kwargs): def simulate(*args, **kwargs):
global need_resume, need_startup global need_startup
if need_startup: if need_startup:
root = objects.Root.getInstance() root = objects.Root.getInstance()
@ -160,9 +161,8 @@ def simulate(*args, **kwargs):
# Reset to put the stats in a consistent state. # Reset to put the stats in a consistent state.
stats.reset() stats.reset()
for root in need_resume: if _drain_manager.isDrained():
resume(root) _drain_manager.resume()
need_resume = []
return internal.event.simulate(*args, **kwargs) return internal.event.simulate(*args, **kwargs)
@ -170,33 +170,40 @@ def simulate(*args, **kwargs):
def curTick(): def curTick():
return internal.core.curTick() return internal.core.curTick()
# Drain the system in preparation of a checkpoint or memory mode def drain():
# switch. """Drain the simulator in preparation of a checkpoint or memory mode
def drain(root): switch.
This operation is a no-op if the simulator is already in the
Drained state.
"""
# Try to drain all objects. Draining might not be completed unless # Try to drain all objects. Draining might not be completed unless
# all objects return that they are drained on the first call. This # all objects return that they are drained on the first call. This
# is because as objects drain they may cause other objects to no # is because as objects drain they may cause other objects to no
# longer be drained. # longer be drained.
def _drain(): def _drain():
all_drained = False # Try to drain the system. The drain is successful if all
dm = internal.drain.createDrainManager() # objects are done without simulation. We need to simulate
unready_objs = sum(obj.drain(dm) for obj in root.descendants()) # more if not.
# If we've got some objects that can't drain immediately, then simulate if _drain_manager.tryDrain():
if unready_objs > 0: return True
dm.setCount(unready_objs)
#WARNING: if a valid exit event occurs while draining, it will not # WARNING: if a valid exit event occurs while draining, it
# get returned to the user script # will not get returned to the user script
exit_event = simulate() exit_event = internal.event.simulate()
while exit_event.getCause() != 'Finished drain': while exit_event.getCause() != 'Finished drain':
exit_event = simulate() exit_event = simulate()
else:
all_drained = True
internal.drain.cleanupDrainManager(dm)
return all_drained
all_drained = _drain() return False
while (not all_drained):
all_drained = _drain() # Don't try to drain a system that is already drained
is_drained = _drain_manager.isDrained()
while not is_drained:
is_drained = _drain()
assert _drain_manager.isDrained(), "Drain state inconsistent"
def memWriteback(root): def memWriteback(root):
for obj in root.descendants(): for obj in root.descendants():
@ -206,18 +213,15 @@ def memInvalidate(root):
for obj in root.descendants(): for obj in root.descendants():
obj.memInvalidate() obj.memInvalidate()
def resume(root):
for obj in root.descendants(): obj.drainResume()
def checkpoint(dir): def checkpoint(dir):
root = objects.Root.getInstance() root = objects.Root.getInstance()
if not isinstance(root, objects.Root): if not isinstance(root, objects.Root):
raise TypeError, "Checkpoint must be called on a root object." raise TypeError, "Checkpoint must be called on a root object."
drain(root)
drain()
memWriteback(root) memWriteback(root)
print "Writing checkpoint" print "Writing checkpoint"
internal.core.serializeAll(dir) internal.core.serializeAll(dir)
resume(root)
def _changeMemoryMode(system, mode): def _changeMemoryMode(system, mode):
if not isinstance(system, (objects.Root, objects.System)): if not isinstance(system, (objects.Root, objects.System)):
@ -228,15 +232,9 @@ def _changeMemoryMode(system, mode):
else: else:
print "System already in target mode. Memory mode unchanged." print "System already in target mode. Memory mode unchanged."
def switchCpus(system, cpuList, do_drain=True, verbose=True): def switchCpus(system, cpuList, verbose=True):
"""Switch CPUs in a system. """Switch CPUs in a system.
By default, this method drains and resumes the system. This
behavior can be disabled by setting the keyword argument
'do_drain' to false, which might be desirable if multiple
operations requiring a drained system are going to be performed in
sequence.
Note: This method may switch the memory mode of the system if that Note: This method may switch the memory mode of the system if that
is required by the CPUs. It may also flush all caches in the is required by the CPUs. It may also flush all caches in the
system. system.
@ -244,9 +242,6 @@ def switchCpus(system, cpuList, do_drain=True, verbose=True):
Arguments: Arguments:
system -- Simulated system. system -- Simulated system.
cpuList -- (old_cpu, new_cpu) tuples cpuList -- (old_cpu, new_cpu) tuples
Keyword Arguments:
do_drain -- Perform a drain/resume of the system when switching.
""" """
if verbose: if verbose:
@ -292,8 +287,7 @@ def switchCpus(system, cpuList, do_drain=True, verbose=True):
except KeyError: except KeyError:
raise RuntimeError, "Invalid memory mode (%s)" % memory_mode_name raise RuntimeError, "Invalid memory mode (%s)" % memory_mode_name
if do_drain: drain()
drain(system)
# Now all of the CPUs are ready to be switched out # Now all of the CPUs are ready to be switched out
for old_cpu, new_cpu in cpuList: for old_cpu, new_cpu in cpuList:
@ -314,7 +308,4 @@ def switchCpus(system, cpuList, do_drain=True, verbose=True):
for old_cpu, new_cpu in cpuList: for old_cpu, new_cpu in cpuList:
new_cpu.takeOverFrom(old_cpu) new_cpu.takeOverFrom(old_cpu)
if do_drain:
resume(system)
from internal.core import disableAllListeners from internal.core import disableAllListeners

View file

@ -46,21 +46,3 @@
%nodefaultctor Drainable; %nodefaultctor Drainable;
%include "sim/drain.hh" %include "sim/drain.hh"
%inline %{
DrainManager *
createDrainManager()
{
return new DrainManager();
}
void
cleanupDrainManager(DrainManager *drain_manager)
{
assert(drain_manager);
assert(drain_manager->getCount() == 0);
delete drain_manager;
}
%}

View file

@ -644,20 +644,15 @@ CxxConfigManager::startup()
} }
unsigned int unsigned int
CxxConfigManager::drain(DrainManager *drain_manager) CxxConfigManager::drain()
{ {
unsigned int ret = 0; return DrainManager::instance().tryDrain() ? 0 : 1;
for (auto i = objectsInOrder.begin(); i != objectsInOrder.end(); ++ i)
ret += (*i)->drain(drain_manager);
return ret;
} }
void void
CxxConfigManager::drainResume() CxxConfigManager::drainResume()
{ {
forEachObject(&SimObject::drainResume); DrainManager::instance().resume();
} }
void void

View file

@ -283,7 +283,7 @@ class CxxConfigManager
void startup(); void startup();
/** Drain all objects */ /** Drain all objects */
unsigned int drain(DrainManager *drain_manager); unsigned int drain();
/** Resume from drain */ /** Resume from drain */
void drainResume(); void drainResume();

View file

@ -38,10 +38,17 @@
*/ */
#include "sim/drain.hh" #include "sim/drain.hh"
#include "base/misc.hh"
#include "base/trace.hh"
#include "debug/Drain.hh"
#include "sim/sim_exit.hh" #include "sim/sim_exit.hh"
DrainManager DrainManager::_instance;
DrainManager::DrainManager() DrainManager::DrainManager()
: _count(0) : _count(0),
_state(DrainState::Running)
{ {
} }
@ -49,21 +56,108 @@ DrainManager::~DrainManager()
{ {
} }
void bool
DrainManager::drainCycleDone() DrainManager::tryDrain()
{ {
panic_if(_state == DrainState::Drained,
"Trying to drain a drained system\n");
panic_if(_count != 0,
"Drain counter must be zero at the start of a drain cycle\n");
DPRINTF(Drain, "Trying to drain %u objects.\n", drainableCount());
_state = DrainState::Draining;
for (auto *obj : _allDrainable)
_count += obj->drain(&_instance);
if (_count == 0) {
DPRINTF(Drain, "Drain done.\n");
_state = DrainState::Drained;
return true;
} else {
DPRINTF(Drain, "Need another drain cycle. %u/%u objects not ready.\n",
_count, drainableCount());
return false;
}
}
void
DrainManager::resume()
{
panic_if(_state == DrainState::Running,
"Trying to resume a system that is already running\n");
warn_if(_state == DrainState::Draining,
"Resuming a system that isn't fully drained, this is untested and "
"likely to break\n");
panic_if(_count != 0,
"Resume called in the middle of a drain cycle. %u objects "
"left to drain.\n", _count);
DPRINTF(Drain, "Resuming %u objects.\n", drainableCount());
_state = DrainState::Running;
for (auto *obj : _allDrainable)
obj->drainResume();
}
void
DrainManager::preCheckpointRestore()
{
panic_if(_state != DrainState::Running,
"preCheckpointRestore() called on a system that isn't in the "
"Running state.\n");
DPRINTF(Drain, "Applying pre-restore fixes to %u objects.\n",
drainableCount());
_state = DrainState::Drained;
for (auto *obj : _allDrainable)
obj->_drainState = DrainState::Drained;
}
void
DrainManager::signalDrainDone()
{
if (--_count == 0) {
DPRINTF(Drain, "All %u objects drained..\n", drainableCount());
exitSimLoop("Finished drain", 0); exitSimLoop("Finished drain", 0);
} }
}
void
DrainManager::registerDrainable(Drainable *obj)
{
std::lock_guard<std::mutex> lock(globalLock);
_allDrainable.insert(obj);
}
void
DrainManager::unregisterDrainable(Drainable *obj)
{
std::lock_guard<std::mutex> lock(globalLock);
_allDrainable.erase(obj);
}
size_t
DrainManager::drainableCount() const
{
std::lock_guard<std::mutex> lock(globalLock);
return _allDrainable.size();
}
Drainable::Drainable() Drainable::Drainable()
: _drainState(DrainState::Running) : _drainManager(DrainManager::instance()),
_drainState(DrainState::Running)
{ {
_drainManager.registerDrainable(this);
} }
Drainable::~Drainable() Drainable::~Drainable()
{ {
_drainManager.unregisterDrainable(this);
} }
void void

View file

@ -40,8 +40,9 @@
#ifndef __SIM_DRAIN_HH__ #ifndef __SIM_DRAIN_HH__
#define __SIM_DRAIN_HH__ #define __SIM_DRAIN_HH__
#include <cassert> #include <atomic>
#include <vector> #include <mutex>
#include <unordered_set>
#include "base/flags.hh" #include "base/flags.hh"
@ -76,12 +77,12 @@ enum class DrainState {
/** /**
* This class coordinates draining of a System. * This class coordinates draining of a System.
* *
* When draining a System, we need to make sure that all SimObjects in * When draining the simulator, we need to make sure that all
* that system have drained their state before declaring the operation * Drainable objects within the system have ended up in the drained
* to be successful. This class keeps track of how many objects are * state before declaring the operation to be successful. This class
* still in the process of draining their state. Once it determines * keeps track of how many objects are still in the process of
* that all objects have drained their state, it exits the simulation * draining. Once it determines that all objects have drained their
* loop. * state, it exits the simulation loop.
* *
* @note A System might not be completely drained even though the * @note A System might not be completely drained even though the
* DrainManager has caused the simulation loop to exit. Draining needs * DrainManager has caused the simulation loop to exit. Draining needs
@ -91,39 +92,92 @@ enum class DrainState {
*/ */
class DrainManager class DrainManager
{ {
public: private:
DrainManager(); DrainManager();
virtual ~DrainManager(); #ifndef SWIG
DrainManager(DrainManager &) = delete;
#endif
~DrainManager();
public:
/** Get the singleton DrainManager instance */
static DrainManager &instance() { return _instance; }
/** /**
* Get the number of objects registered with this DrainManager * Try to drain the system.
* that are currently draining their state.
* *
* @return Number of objects currently draining. * Try to drain the system and return true if all objects are in a
* the Drained state at which point the whole simulator is in a
* consistent state and ready for checkpointing or CPU
* handover. The simulation script must continue simulating until
* the simulation loop returns "Finished drain", at which point
* this method should be called again. This cycle should continue
* until this method returns true.
*
* @return true if all objects were drained successfully, false if
* more simulation is needed.
*/ */
unsigned int getCount() const { return _count; } bool tryDrain();
void setCount(int count) { _count = count; } /**
* Resume normal simulation in a Drained system.
*/
void resume();
/**
* Run state fixups before a checkpoint restore operation
*
* The drain state of an object isn't stored in a checkpoint since
* the whole system is always going to be in the Drained state
* when the checkpoint is created. When the checkpoint is restored
* at a later stage, recreated objects will be in the Running
* state since the state isn't stored in checkpoints. This method
* performs state fixups on all Drainable objects and the
* DrainManager itself.
*/
void preCheckpointRestore();
/** Check if the system is drained */
bool isDrained() { return _state == DrainState::Drained; }
/** Get the simulators global drain state */
DrainState state() { return _state; }
/** /**
* Notify the DrainManager that a Drainable object has finished * Notify the DrainManager that a Drainable object has finished
* draining. * draining.
*/ */
void signalDrainDone() { void signalDrainDone();
assert(_count > 0);
if (--_count == 0)
drainCycleDone();
}
protected: public:
void registerDrainable(Drainable *obj);
void unregisterDrainable(Drainable *obj);
private:
/** /**
* Callback when all registered Drainable objects have completed a * Thread-safe helper function to get the number of Drainable
* drain cycle. * objects in a system.
*/ */
virtual void drainCycleDone(); size_t drainableCount() const;
/** Number of objects still draining. */ /** Lock protecting the set of drainable objects */
unsigned int _count; mutable std::mutex globalLock;
/** Set of all drainable objects */
std::unordered_set<Drainable *> _allDrainable;
/**
* Number of objects still draining. This is flagged atomic since
* it can be manipulated by SimObjects living in different
* threads.
*/
std::atomic_uint _count;
/** Global simulator drain state */
DrainState _state;
/** Singleton instance of the drain manager */
static DrainManager _instance;
}; };
/** /**
@ -133,17 +187,11 @@ class DrainManager
* An object's internal state needs to be drained when creating a * An object's internal state needs to be drained when creating a
* checkpoint, switching between CPU models, or switching between * checkpoint, switching between CPU models, or switching between
* timing models. Once the internal state has been drained from * timing models. Once the internal state has been drained from
* <i>all</i> objects in the system, the objects are serialized to * <i>all</i> objects in the simulator, the objects are serialized to
* disc or the configuration change takes place. The process works as * disc or the configuration change takes place. The process works as
* follows (see simulate.py for details): * follows (see simulate.py for details):
* *
* <ol> * <ol>
* <li>An instance of a DrainManager is created to keep track of how
* many objects need to be drained. The object maintains an
* internal counter that is decreased every time its
* CountedDrainEvent::signalDrainDone() method is called. When the
* counter reaches zero, the simulation is stopped.
*
* <li>Call Drainable::drain() for every object in the * <li>Call Drainable::drain() for every object in the
* system. Draining has completed if all of them return * system. Draining has completed if all of them return
* zero. Otherwise, the sum of the return values is loaded into * zero. Otherwise, the sum of the return values is loaded into
@ -151,9 +199,9 @@ class DrainManager
* manager is passed as an argument to the drain() method. * manager is passed as an argument to the drain() method.
* *
* <li>Continue simulation. When an object has finished draining its * <li>Continue simulation. When an object has finished draining its
* internal state, it calls CountedDrainEvent::signalDrainDone() * internal state, it calls DrainManager::signalDrainDone() on the
* on the manager. When the counter in the manager reaches zero, * manager. When the counter in the manager reaches zero, the
* the simulation stops. * simulation stops.
* *
* <li>Check if any object still needs draining, if so repeat the * <li>Check if any object still needs draining, if so repeat the
* process above. * process above.
@ -166,6 +214,8 @@ class DrainManager
*/ */
class Drainable class Drainable
{ {
friend class DrainManager;
public: public:
Drainable(); Drainable();
virtual ~Drainable(); virtual ~Drainable();
@ -210,10 +260,8 @@ class Drainable
void setDrainState(DrainState new_state) { _drainState = new_state; } void setDrainState(DrainState new_state) { _drainState = new_state; }
private: private:
DrainManager &_drainManager;
DrainState _drainState; DrainState _drainState;
}; };
DrainManager *createDrainManager();
void cleanupDrainManager(DrainManager *drain_manager);
#endif #endif

View file

@ -122,13 +122,12 @@ def run_test(root, switcher=None, freq=1000, verbose=False):
if verbose: if verbose:
print "Switching CPUs..." print "Switching CPUs..."
print "Next CPU: %s" % type(next_cpu) print "Next CPU: %s" % type(next_cpu)
m5.drain(system) m5.drain()
if current_cpu != next_cpu: if current_cpu != next_cpu:
m5.switchCpus(system, [ (current_cpu, next_cpu) ], m5.switchCpus(system, [ (current_cpu, next_cpu) ],
do_drain=False, verbose=verbose) verbose=verbose)
else: else:
print "Source CPU and destination CPU are the same, skipping..." print "Source CPU and destination CPU are the same, skipping..."
m5.resume(system)
current_cpu = next_cpu current_cpu = next_cpu
elif exit_cause == "target called exit()" or \ elif exit_cause == "target called exit()" or \
exit_cause == "m5_exit instruction encountered": exit_cause == "m5_exit instruction encountered":