config: Add configs scripts used in Learning gem5

Added a new directory in configs (learning_gem5) to hold the scripts that are
used in the book. See http://lowepower.com/jason/learning_gem5/ for a working
copy. For now, only the scripts in Part 1: Getting started with gem5
have been added. A separate patch adds tests for these scripts.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
This commit is contained in:
Jason Lowe-Power 2015-09-16 09:35:36 -05:00
parent 0d6a6dfd7b
commit f065f9941b
5 changed files with 487 additions and 0 deletions

View file

@ -0,0 +1,73 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Jason Power
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Jason Power
""" Options wrapper for simple gem5 configuration scripts
This module wraps the optparse class so that we can register options
from each class instead of only from the configuration script.
"""
# Module-level variable to track if we've called the parse_args function yet
called_parse_args = False
# For fatal
import m5
# import the options parser
from optparse import OptionParser
# add the options we want to be able to control from the command line
parser = OptionParser()
def add_option(*args, **kwargs):
"""Call "add_option" to the global options parser
"""
if (parser.has_option(args[0]) or
(len(args) > 1 and parser.has_option(args[1])) ):
m5.fatal("Duplicate option: %s" % str(args))
if called_parse_args:
m5.fatal("Can't add an option after calling SimpleOpts.parse_args")
parser.add_option(*args, **kwargs)
def parse_args():
global called_parse_args
called_parse_args = True
return parser.parse_args()
def set_usage(*args, **kwargs):
parser.set_usage(*args, **kwargs)
def print_help(*args, **kwargs):
parser.print_help(*args, **kwargs)

View file

@ -0,0 +1,29 @@
Learning_gem README
-------------------
This directory contains the configuration scripts used in the "Learning gem5"
book. The scripts contained in these directories are for educational purposes
only and should not be used for architectural research as-is.
"Learning gem5" is currently in early development stages. A pre-alpha working
version of the book can be found at the following URL.
http://lowepower.com/jason/learning_gem5/
This directory is broken into one subdirectory per part of the book.
Goals of these scripts
~~~~~~~~~~~~~~~~~~~~~~
These scripts are not necessarily useful outside the scope of the learning
gem5 book. The goal is to include the learning gem5 scripts, following the
book as closely as possible, so that the regression tester will catch any
changes that affect the book.
For general users, these are *not* good scripts to use for running complex
architectural experiments. These scripts *are* a good starting point example
of how to write your own scripts for experiments.
Feedback
~~~~~~~~
Send mail to power.jg@gmail.com to provide feedback.

View file

@ -0,0 +1,127 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Jason Power
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Jason Power
""" Caches with options for a simple gem5 configuration script
This file contains L1 I/D and L2 caches to be used in the simple
gem5 configuration script. It uses the SimpleOpts wrapper to set up command
line options from each individual class.
"""
from m5.objects import Cache
import SimpleOpts
# Some specific options for caches
# For all options see src/mem/cache/BaseCache.py
class L1Cache(Cache):
"""Simple L1 Cache with default values"""
assoc = 2
hit_latency = 2
response_latency = 2
mshrs = 4
tgts_per_mshr = 20
def __init__(self, options=None):
super(L1Cache, self).__init__()
pass
def connectBus(self, bus):
"""Connect this cache to a memory-side bus"""
self.mem_side = bus.slave
def connectCPU(self, cpu):
"""Connect this cache's port to a CPU-side port
This must be defined in a subclass"""
raise NotImplementedError
class L1ICache(L1Cache):
"""Simple L1 instruction cache with default values"""
# Set the default size
size = '16kB'
SimpleOpts.add_option('--l1i_size',
help="L1 instruction cache size. Default: %s" % size)
def __init__(self, opts=None):
super(L1ICache, self).__init__(opts)
if not opts or not opts.l1i_size:
return
self.size = opts.l1i_size
def connectCPU(self, cpu):
"""Connect this cache's port to a CPU icache port"""
self.cpu_side = cpu.icache_port
class L1DCache(L1Cache):
"""Simple L1 data cache with default values"""
# Set the default size
size = '64kB'
SimpleOpts.add_option('--l1d_size',
help="L1 data cache size. Default: %s" % size)
def __init__(self, opts=None):
super(L1DCache, self).__init__(opts)
if not opts or not opts.l1d_size:
return
self.size = opts.l1d_size
def connectCPU(self, cpu):
"""Connect this cache's port to a CPU dcache port"""
self.cpu_side = cpu.dcache_port
class L2Cache(Cache):
"""Simple L2 Cache with default values"""
# Default parameters
size = '256kB'
assoc = 8
hit_latency = 20
response_latency = 20
mshrs = 20
tgts_per_mshr = 12
SimpleOpts.add_option('--l2_size', help="L2 cache size. Default: %s" % size)
def __init__(self, opts=None):
super(L2Cache, self).__init__()
if not opts or not opts.l2_size:
return
self.size = opts.l2_size
def connectCPUSideBus(self, bus):
self.cpu_side = bus.master
def connectMemSideBus(self, bus):
self.mem_side = bus.slave

View file

@ -0,0 +1,107 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Jason Power
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Jason Power
""" This file creates a barebones system and executes 'hello', a simple Hello
World application.
See Part 1, Chapter 2: Creating a simple configuration script in the
learning_gem5 book for more information about this script.
IMPORTANT: If you modify this file, it's likely that the Learning gem5 book
also needs to be updated. For now, email Jason <power.jg@gmail.com>
"""
# import the m5 (gem5) library created when gem5 is built
import m5
# import all of the SimObjects
from m5.objects import *
# create the system we are going to simulate
system = System()
# Set the clock fequency of the system (and all of its children)
system.clk_domain = SrcClockDomain()
system.clk_domain.clock = '1GHz'
system.clk_domain.voltage_domain = VoltageDomain()
# Set up the system
system.mem_mode = 'timing' # Use timing accesses
system.mem_ranges = [AddrRange('512MB')] # Create an address range
# Create a simple CPU
system.cpu = TimingSimpleCPU()
# Create a memory bus, a system crossbar, in this case
system.membus = SystemXBar()
# Hook the CPU ports up to the membus
system.cpu.icache_port = system.membus.slave
system.cpu.dcache_port = system.membus.slave
# create the interrupt controller for the CPU and connect to the membus
system.cpu.createInterruptController()
# For x86 only, make sure the interrupts are connected to the memory
# Note: these are directly connected to the memory bus and are not cached
if m5.defines.buildEnv['TARGET_ISA'] == "x86":
system.cpu.interrupts.pio = system.membus.master
system.cpu.interrupts.int_master = system.membus.slave
system.cpu.interrupts.int_slave = system.membus.master
# Create a DDR3 memory controller and connect it to the membus
system.mem_ctrl = DDR3_1600_x64()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master
# Connect the system up to the membus
system.system_port = system.membus.slave
# get ISA for the binary to run.
isa = str(m5.defines.buildEnv['TARGET_ISA']).lower()
# Run 'hello' and use the compiled ISA to find the binary
binary = 'tests/test-progs/hello/bin/' + isa + '/linux/hello'
# Create a process for a simple "Hello World" application
process = LiveProcess()
# Set the command
# cmd is a list which begins with the executable (like argv)
process.cmd = [binary]
# Set the cpu to use the process as its workload and create thread contexts
system.cpu.workload = process
system.cpu.createThreads()
# set up the root SimObject and start the simulation
root = Root(full_system = False, system = system)
# instantiate all of the objects we've created above
m5.instantiate()
print "Beginning simulation!"
exit_event = m5.simulate()
print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())

View file

@ -0,0 +1,151 @@
# -*- coding: utf-8 -*-
# Copyright (c) 2015 Jason Power
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met: redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer;
# redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution;
# neither the name of the copyright holders nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Authors: Jason Power
""" This file creates a single CPU and a two-level cache system.
This script takes a single parameter which specifies a binary to execute.
If none is provided it executes 'hello' by default (mostly used for testing)
See Part 1, Chapter 3: Adding cache to the configuration script in the
learning_gem5 book for more information about this script.
This file exports options for the L1 I/D and L2 cache sizes.
IMPORTANT: If you modify this file, it's likely that the Learning gem5 book
also needs to be updated. For now, email Jason <power.jg@gmail.com>
"""
# import the m5 (gem5) library created when gem5 is built
import m5
# import all of the SimObjects
from m5.objects import *
# Add the common scripts to our path
m5.util.addToPath('../../common')
# import the caches which we made
from caches import *
# import the SimpleOpts module
import SimpleOpts
# Set the usage message to display
SimpleOpts.set_usage("usage: %prog [options] <binary to execute>")
# Finalize the arguments and grab the opts so we can pass it on to our objects
(opts, args) = SimpleOpts.parse_args()
# get ISA for the default binary to run. This is mostly for simple testing
isa = str(m5.defines.buildEnv['TARGET_ISA']).lower()
# Default to running 'hello', use the compiled ISA to find the binary
binary = 'tests/test-progs/hello/bin/' + isa + '/linux/hello'
# Check if there was a binary passed in via the command line and error if
# there are too many arguments
if len(args) == 1:
binary = args[0]
elif len(args) > 1:
SimpleOpts.print_help()
m5.fatal("Expected a binary to execute as positional argument")
# create the system we are going to simulate
system = System()
# Set the clock fequency of the system (and all of its children)
system.clk_domain = SrcClockDomain()
system.clk_domain.clock = '1GHz'
system.clk_domain.voltage_domain = VoltageDomain()
# Set up the system
system.mem_mode = 'timing' # Use timing accesses
system.mem_ranges = [AddrRange('512MB')] # Create an address range
# Create a simple CPU
system.cpu = TimingSimpleCPU()
# Create an L1 instruction and data cache
system.cpu.icache = L1ICache(opts)
system.cpu.dcache = L1DCache(opts)
# Connect the instruction and data caches to the CPU
system.cpu.icache.connectCPU(system.cpu)
system.cpu.dcache.connectCPU(system.cpu)
# Create a memory bus, a coherent crossbar, in this case
system.l2bus = L2XBar()
# Hook the CPU ports up to the l2bus
system.cpu.icache.connectBus(system.l2bus)
system.cpu.dcache.connectBus(system.l2bus)
# Create an L2 cache and connect it to the l2bus
system.l2cache = L2Cache(opts)
system.l2cache.connectCPUSideBus(system.l2bus)
# Create a memory bus
system.membus = SystemXBar()
# Connect the L2 cache to the membus
system.l2cache.connectMemSideBus(system.membus)
# create the interrupt controller for the CPU
system.cpu.createInterruptController()
# For x86 only, make sure the interrupts are connected to the memory
# Note: these are directly connected to the memory bus and are not cached
if m5.defines.buildEnv['TARGET_ISA'] == "x86":
system.cpu.interrupts.pio = system.membus.master
system.cpu.interrupts.int_master = system.membus.slave
system.cpu.interrupts.int_slave = system.membus.master
# Connect the system up to the membus
system.system_port = system.membus.slave
# Create a DDR3 memory controller
system.mem_ctrl = DDR3_1600_x64()
system.mem_ctrl.range = system.mem_ranges[0]
system.mem_ctrl.port = system.membus.master
# Create a process for a simple "Hello World" application
process = LiveProcess()
# Set the command
# cmd is a list which begins with the executable (like argv)
process.cmd = [binary]
# Set the cpu to use the process as its workload and create thread contexts
system.cpu.workload = process
system.cpu.createThreads()
# set up the root SimObject and start the simulation
root = Root(full_system = False, system = system)
# instantiate all of the objects we've created above
m5.instantiate()
print "Beginning simulation!"
exit_event = m5.simulate()
print 'Exiting @ tick %i because %s' % (m5.curTick(), exit_event.getCause())