Add in checker. Supports dynamically verifying the execution of instructions, as well as limited amount of control path verification. It will verify anything within the program, but anything external (traps, interrupts, XC) it assumes is redirected properly by the CPU. Similarly it assumes the results of store conditionals, uncached loads, and instructions marked as "unverifiable" are correct from the CPU.

base/traceflags.py:
build/SConstruct:
cpu/SConscript:
cpu/cpu_models.py:
    Add in Checker.
cpu/base.cc:
    Add in checker support.  Also XC status starts off as suspended.
cpu/base.hh:
    Add in checker.

--HG--
extra : convert_revision : 091b5cc83e837858adb681ef0137a0beb30bd1b2
This commit is contained in:
Kevin Lim 2006-05-16 13:59:29 -04:00
parent bd88385034
commit c23b23f4e7
11 changed files with 1692 additions and 5 deletions

View file

@ -150,7 +150,8 @@ baseFlags = [
'DependGraph',
'Activity',
'Scoreboard',
'Writeback'
'Writeback',
'Checker'
]
#

View file

@ -223,7 +223,7 @@ env['ALL_ISA_LIST'] = ['alpha', 'sparc', 'mips']
# Define the universe of supported CPU models
env['ALL_CPU_LIST'] = ['SimpleCPU', 'FastCPU', 'FullCPU', 'AlphaFullCPU',
'OzoneSimpleCPU', 'OzoneCPU']
'OzoneSimpleCPU', 'OzoneCPU', 'CheckerCPU']
# Sticky options get saved in the options file so they persist from

View file

@ -150,6 +150,13 @@ if 'OzoneCPU' in env['CPU_MODELS']:
ozone/lw_lsq.cc
''')
if 'CheckerCPU' in env['CPU_MODELS']:
sources += Split('''
checker/cpu.cc
checker/cpu_builder.cc
checker/o3_cpu_builder.cc
''')
# FullCPU sources are included from m5/SConscript since they're not
# below this point in the file hierarchy.

View file

@ -164,6 +164,7 @@ BaseCPU::Params::Params()
#if FULL_SYSTEM
profile = false;
#endif
checker = NULL;
}
void
@ -229,15 +230,18 @@ BaseCPU::registerExecContexts()
{
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
if (xc->status() == ExecContext::Suspended) {
#if FULL_SYSTEM
int id = params->cpu_id;
if (id != -1)
id += i;
int id = params->cpu_id;
if (id != -1)
id += i;
xc->setCpuId(system->registerExecContext(xc, id));
#else
xc->setCpuId(xc->getProcessPtr()->registerExecContext(xc));
#endif
}
}
}

View file

@ -44,6 +44,7 @@ namespace Kernel { class Statistics; }
#endif
class BranchPred;
class CheckerCPU;
class ExecContext;
class BaseCPU : public SimObject
@ -128,6 +129,7 @@ class BaseCPU : public SimObject
int cpu_id;
Tick profile;
#endif
BaseCPU *checker;
Params();
};

857
cpu/checker/cpu.cc Normal file
View file

@ -0,0 +1,857 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//#include <cmath>
#include <cstdio>
//#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <list>
//#include <sstream>
#include <string>
//#include "base/cprintf.hh"
//#include "base/inifile.hh"
//#include "base/loader/symtab.hh"
#include "base/misc.hh"
//#include "base/pollevent.hh"
//#include "base/range.hh"
#include "base/refcnt.hh"
//#include "base/stats/events.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
//#include "cpu/exetrace.hh"
//#include "cpu/profile.hh"
#include "cpu/sampler/sampler.hh"
//#include "cpu/smt.hh"
#include "cpu/static_inst.hh"
//#include "kern/kernel_stats.hh"
#include "mem/base_mem.hh"
#include "mem/mem_interface.hh"
#include "sim/byteswap.hh"
#include "sim/builder.hh"
//#include "sim/debug.hh"
//#include "sim/host.hh"
//#include "sim/sim_events.hh"
#include "sim/sim_object.hh"
#include "sim/stats.hh"
#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "cpu/ozone/simple_impl.hh"
#if FULL_SYSTEM
#include "base/remote_gdb.hh"
#include "mem/functional/memory_control.hh"
#include "mem/functional/physical.hh"
#include "sim/system.hh"
#include "arch/tlb.hh"
#include "arch/stacktrace.hh"
#include "arch/vtophys.hh"
#else // !FULL_SYSTEM
#include "mem/functional/functional.hh"
#endif // FULL_SYSTEM
using namespace std;
//The CheckerCPU does alpha only
using namespace AlphaISA;
void
CheckerCPU::init()
{
/*
BaseCPU::init();
#if FULL_SYSTEM
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
// initialize CPU, including PC
TheISA::initCPU(xc, xc->readCpuId());
}
#endif
*/
}
CheckerCPU::CheckerCPU(Params *p)
: BaseCPU(p), cpuXC(NULL), xcProxy(NULL)
{
memReq = new MemReq();
memReq->xc = xcProxy;
memReq->asid = 0;
memReq->data = new uint8_t[64];
numInst = 0;
startNumInst = 0;
numLoad = 0;
startNumLoad = 0;
youngestSN = 0;
changedPC = willChangePC = changedNextPC = false;
exitOnError = p->exitOnError;
#if FULL_SYSTEM
itb = p->itb;
dtb = p->dtb;
systemPtr = NULL;
memPtr = NULL;
#endif
}
CheckerCPU::~CheckerCPU()
{
}
void
CheckerCPU::setMemory(FunctionalMemory *mem)
{
memPtr = mem;
#if !FULL_SYSTEM
cpuXC = new CPUExecContext(this, /* thread_num */ 0, mem,
/* asid */ 0);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
#else
if (systemPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
}
#endif
}
#if FULL_SYSTEM
void
CheckerCPU::setSystem(System *system)
{
systemPtr = system;
if (memPtr) {
cpuXC = new CPUExecContext(this, 0, systemPtr, itb, dtb, memPtr);
cpuXC->setStatus(ExecContext::Suspended);
xcProxy = cpuXC->getProxy();
execContexts.push_back(xcProxy);
memReq->xc = xcProxy;
}
}
#endif
void
CheckerCPU::serialize(ostream &os)
{
/*
BaseCPU::serialize(os);
SERIALIZE_SCALAR(inst);
nameOut(os, csprintf("%s.xc", name()));
cpuXC->serialize(os);
cacheCompletionEvent.serialize(os);
*/
}
void
CheckerCPU::unserialize(Checkpoint *cp, const string &section)
{
/*
BaseCPU::unserialize(cp, section);
UNSERIALIZE_SCALAR(inst);
cpuXC->unserialize(cp, csprintf("%s.xc", section));
*/
}
Fault
CheckerCPU::copySrcTranslate(Addr src)
{
static bool no_warn = true;
int blk_size = 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
int offset = src & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(src & PageMask) != ((src + blk_size) & PageMask) &&
(src >> 40) != 0xfffffc) {
warn("Copied block source spans pages %x.", src);
no_warn = false;
}
memReq->reset(src & ~(blk_size - 1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataReadReq(memReq);
if (fault == NoFault) {
cpuXC->copySrcAddr = src;
cpuXC->copySrcPhysAddr = memReq->paddr + offset;
} else {
assert(!fault->isAlignmentFault());
cpuXC->copySrcAddr = 0;
cpuXC->copySrcPhysAddr = 0;
}
return fault;
}
Fault
CheckerCPU::copy(Addr dest)
{
static bool no_warn = true;
int blk_size = 64;
// Only support block sizes of 64 atm.
assert(blk_size == 64);
uint8_t data[blk_size];
//assert(cpuXC->copySrcAddr);
int offset = dest & (blk_size - 1);
// Make sure block doesn't span page
if (no_warn &&
(dest & PageMask) != ((dest + blk_size) & PageMask) &&
(dest >> 40) != 0xfffffc) {
no_warn = false;
warn("Copied block destination spans pages %x. ", dest);
}
memReq->reset(dest & ~(blk_size -1), blk_size);
// translate to physical address
Fault fault = cpuXC->translateDataWriteReq(memReq);
if (fault == NoFault) {
Addr dest_addr = memReq->paddr + offset;
// Need to read straight from memory since we have more than 8 bytes.
memReq->paddr = cpuXC->copySrcPhysAddr;
cpuXC->mem->read(memReq, data);
memReq->paddr = dest_addr;
cpuXC->mem->write(memReq, data);
memReq->cmd = Copy;
memReq->completionEvent = NULL;
memReq->paddr = cpuXC->copySrcPhysAddr;
memReq->dest = dest_addr;
memReq->size = 64;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
}
else
assert(!fault->isAlignmentFault());
return fault;
}
// precise architected memory state accessor macros
template <class T>
Fault
CheckerCPU::read(Addr addr, T &data, unsigned flags)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
// Should I probe the DTB? Or should I just take the physical address
// and assume correct translation?
translateDataReadReq(memReq);
// if we have a cache, do cache access too
memReq->cmd = Read;
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
if (!(memReq->flags & UNCACHEABLE)) {
cpuXC->read(memReq, data);
} else {
// Assume the data is correct if it's an uncached access
memcpy(&data, &unverifiedResult.integer, sizeof(T));
}
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::read(Addr addr, uint64_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint32_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint16_t &data, unsigned flags);
template
Fault
CheckerCPU::read(Addr addr, uint8_t &data, unsigned flags);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::read(Addr addr, double &data, unsigned flags)
{
return read(addr, *(uint64_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, float &data, unsigned flags)
{
return read(addr, *(uint32_t*)&data, flags);
}
template<>
Fault
CheckerCPU::read(Addr addr, int32_t &data, unsigned flags)
{
return read(addr, (uint32_t&)data, flags);
}
template <class T>
Fault
CheckerCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
{
memReq->reset(addr, sizeof(T), flags);
// translate to physical address
cpuXC->translateDataWriteReq(memReq);
if ((!(unverifiedReq->flags & LOCKED) ||
((unverifiedReq->flags & LOCKED) &&
unverifiedReq->result == 1)) &&
!(unverifiedReq->flags & UNCACHEABLE)) {
// do functional access
// cpuXC->read(memReq, data);
memReq->cmd = Write;
// memcpy(memReq->data,(uint8_t *)&data,memReq->size);
T inst_data;
memcpy(&inst_data, unverifiedReq->data, sizeof(T));
memReq->completionEvent = NULL;
memReq->time = curTick;
memReq->flags &= ~INST_READ;
// Hard to verify this as the data writes back after the
// instruction commits. May only be able to check that the
// value produced from execute() matches the value produced
// from the instruction's first execution.
if (data != inst_data) {
warn("Store value does not match value in memory! "
"Instruction: %#x, memory: %#x",
inst_data, data);
handleError();
}
}
// Assume the result was the same as the one passed in. This checker
// doesn't check if the SC should succeed or fail, it just checks the
// value.
if (res)
*res = unverifiedReq->result;
return NoFault;
}
#ifndef DOXYGEN_SHOULD_SKIP_THIS
template
Fault
CheckerCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
template
Fault
CheckerCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
#endif //DOXYGEN_SHOULD_SKIP_THIS
template<>
Fault
CheckerCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint64_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
{
return write(*(uint32_t*)&data, addr, flags, res);
}
template<>
Fault
CheckerCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
{
return write((uint32_t)data, addr, flags, res);
}
#if FULL_SYSTEM
Addr
CheckerCPU::dbg_vtophys(Addr addr)
{
return vtophys(xcProxy, addr);
}
#endif // FULL_SYSTEM
#if FULL_SYSTEM
void
CheckerCPU::post_interrupt(int int_num, int index)
{
BaseCPU::post_interrupt(int_num, index);
if (cpuXC->status() == ExecContext::Suspended) {
DPRINTF(IPI,"Suspended Processor awoke\n");
cpuXC->activate();
}
}
#endif // FULL_SYSTEM
bool
CheckerCPU::translateInstReq(MemReqPtr &req)
{
#if FULL_SYSTEM
return (cpuXC->translateInstReq(req) == NoFault);
#else
cpuXC->translateInstReq(req);
return true;
#endif
}
void
CheckerCPU::translateDataReadReq(MemReqPtr &req)
{
cpuXC->translateDataReadReq(req);
if (req->vaddr != unverifiedReq->vaddr) {
warn("Request virtual addresses do not match! Inst: %#x, checker:"
" %#x",
unverifiedReq->vaddr, req->vaddr);
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("Request flags do not match! Inst: %#x, checker: %#x",
unverifiedReq->flags, req->flags);
handleError();
}
}
void
CheckerCPU::translateDataWriteReq(MemReqPtr &req)
{
cpuXC->translateDataWriteReq(req);
if (req->vaddr != unverifiedReq->vaddr) {
warn("Request virtual addresses do not match! Inst: %#x, checker:"
" %#x",
unverifiedReq->vaddr, req->vaddr);
}
req->paddr = unverifiedReq->paddr;
if (checkFlags(req)) {
warn("Request flags do not match! Inst: %#x, checker: %#x",
unverifiedReq->flags, req->flags);
handleError();
}
}
bool
CheckerCPU::checkFlags(MemReqPtr &req)
{
// Remove any dynamic flags that don't have to do with the request itself.
unsigned flags = unverifiedReq->flags;
unsigned mask = LOCKED | PHYSICAL | VPTE | ALTMODE | UNCACHEABLE | NO_FAULT;
flags = flags & (mask);
if (flags == req->flags) {
return false;
} else {
return true;
}
}
/* start simulation, program loaded, processor precise state initialized */
template <class DynInstPtr>
void
Checker<DynInstPtr>::tick(DynInstPtr &completed_inst)
{
DynInstPtr inst;
if (!instList.empty()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
if (!instList.front()->isCompleted()) {
return;
} else {
inst = instList.front();
instList.pop_front();
}
} else {
if (!completed_inst->isCompleted()) {
if (youngestSN < completed_inst->seqNum) {
DPRINTF(Checker, "Adding instruction [sn:%lli] PC:%#x to list.\n",
completed_inst->seqNum, completed_inst->readPC());
instList.push_back(completed_inst);
youngestSN = completed_inst->seqNum;
}
return;
} else {
if (youngestSN < completed_inst->seqNum) {
inst = completed_inst;
youngestSN = completed_inst->seqNum;
} else {
// panic("SN already seen yet the list is empty!");
return;
}
}
}
while (1) {
DPRINTF(Checker, "Processing instruction [sn:%lli] PC:%#x.\n",
inst->seqNum, inst->readPC());
// verifyInst = completed_inst;
unverifiedResult.integer = inst->readIntResult();
unverifiedReq = inst->req;
numCycles++;
Fault fault = NoFault;
// maintain $r0 semantics
cpuXC->setIntReg(ZeroReg, 0);
#ifdef TARGET_ALPHA
cpuXC->setFloatRegDouble(ZeroReg, 0.0);
#endif // TARGET_ALPHA
// Try to fetch an instruction
// set up memory request for instruction fetch
#if FULL_SYSTEM
#define IFETCH_FLAGS(pc) ((pc) & 1) ? PHYSICAL : 0
#else
#define IFETCH_FLAGS(pc) 0
#endif
if (changedPC) {
DPRINTF(Checker, "Changed PC recently to %#x\n",
cpuXC->readPC());
if (willChangePC) {
if (newPC == cpuXC->readPC()) {
DPRINTF(Checker, "Changed PC matches expected PC\n");
} else {
warn("Changed PC does not match expected PC, changed: %#x, "
"expected: %#x",
cpuXC->readPC(), newPC);
handleError();
}
willChangePC = false;
}
changedPC = false;
}
if (changedNextPC) {
DPRINTF(Checker, "Changed NextPC recently to %#x\n",
cpuXC->readNextPC());
changedNextPC = false;
}
memReq->cmd = Read;
memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t),
IFETCH_FLAGS(cpuXC->readPC()));
bool succeeded = translateInstReq(memReq);
if (!succeeded) {
warn("Instruction PC %#x was not found in the ITB!",
cpuXC->readPC());
handleError();
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
return;
}
// if (fault == NoFault)
// fault = cpuXC->mem->read(memReq, machInst);
cpuXC->mem->read(memReq, machInst);
// If we've got a valid instruction (i.e., no fault on instruction
// fetch), then execute it.
// keep an instruction count
numInst++;
// numInsts++;
// decode the instruction
machInst = gtoh(machInst);
// Checks that the instruction matches what we expected it to be.
// Checks both the machine instruction and the PC.
validateInst(inst);
curStaticInst = StaticInst::decode(makeExtMI(machInst, cpuXC->readPC()));
#if FULL_SYSTEM
cpuXC->setInst(machInst);
#endif // FULL_SYSTEM
fault = inst->getFault();
// Either the instruction was a fault and we should process the fault,
// or we should just go ahead execute the instruction. This assumes
// that the instruction is properly marked as a fault.
if (fault == NoFault) {
cpuXC->func_exe_inst++;
fault = curStaticInst->execute(this, NULL);
// Checks to make sure instrution results are correct.
validateExecution(inst);
// if (curStaticInst->isMemRef()) {
// numMemRefs++;
// }
if (curStaticInst->isLoad()) {
++numLoad;
}
}
if (fault != NoFault) {
#if FULL_SYSTEM
fault->invoke(xcProxy);
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "Fault, PC is now %#x\n", newPC);
#else // !FULL_SYSTEM
fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC());
#endif // FULL_SYSTEM
} else {
#if THE_ISA != MIPS_ISA
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
#else
// go to the next instruction
cpuXC->setPC(cpuXC->readNextPC());
cpuXC->setNextPC(cpuXC->readNextNPC());
cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
#endif
}
#if FULL_SYSTEM
Addr oldpc;
int count = 0;
do {
oldpc = cpuXC->readPC();
system->pcEventQueue.service(xcProxy);
count++;
} while (oldpc != cpuXC->readPC());
if (count > 1) {
willChangePC = true;
newPC = cpuXC->readPC();
DPRINTF(Checker, "PC Event, PC is now %#x\n", newPC);
}
#endif
// Checks PC, next PC. Optionally can check all registers. (Or just those
// that have been modified).
validateState();
if (instList.empty()) {
break;
} else if (instList.front()->isCompleted()) {
inst = instList.front();
instList.pop_front();
} else {
break;
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::switchOut(Sampler *s)
{
sampler = s;
instList.clear();
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::takeOverFrom(BaseCPU *oldCPU)
{
// BaseCPU::takeOverFrom(oldCPU);
// if any of this CPU's ExecContexts are active, mark the CPU as
// running and schedule its tick event.
/*
for (int i = 0; i < execContexts.size(); ++i) {
ExecContext *xc = execContexts[i];
}
*/
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateInst(DynInstPtr &inst)
{
if (inst->readPC() != cpuXC->readPC()) {
warn("PCs do not match! Inst: %#x, checker: %#x",
inst->readPC(), cpuXC->readPC());
if (changedPC) {
warn("Changed PCs recently, may not be an error");
} else {
handleError();
}
}
if (static_cast<MachInst>(inst->staticInst->machInst) !=
machInst) {
warn("Binary instructions do not match! Inst: %#x, checker: %#x",
static_cast<MachInst>(inst->staticInst->machInst),
machInst);
handleError();
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateExecution(DynInstPtr &inst)
{
if (inst->numDestRegs()) {
if (inst->isUnverifiable()) {
// @todo: Support more destination registers.
// Grab the result from the instruction and write it to the
// register.
RegIndex idx = inst->destRegIdx(0);
if (idx < TheISA::FP_Base_DepTag) {
cpuXC->setIntReg(idx, inst->readIntResult());
} else if (idx < TheISA::Fpcr_DepTag) {
cpuXC->setFloatRegInt(idx, inst->readIntResult());
} else {
cpuXC->setMiscReg(idx, inst->readIntResult());
}
} else if (result.integer != inst->readIntResult()) {
warn("Instruction results do not match! (May not be integer results) "
"Inst: %#x, checker: %#x",
inst->readIntResult(), result.integer);
handleError();
}
}
if (inst->readNextPC() != cpuXC->readNextPC()) {
warn("Instruction next PCs do not match! Inst: %#x, checker: %#x",
inst->readNextPC(), cpuXC->readNextPC());
handleError();
}
// Checking side effect registers can be difficult if they are not
// checked simultaneously with the execution of the instruction.
// This is because other valid instructions may have modified
// these registers in the meantime, and their values are not
// stored within the DynInst.
while (!miscRegIdxs.empty()) {
int misc_reg_idx = miscRegIdxs.front();
miscRegIdxs.pop();
if (inst->xcBase()->readMiscReg(misc_reg_idx) !=
cpuXC->readMiscReg(misc_reg_idx)) {
warn("Misc reg idx %i (side effect) does not match! Inst: %#x, "
"checker: %#x",
misc_reg_idx, inst->xcBase()->readMiscReg(misc_reg_idx),
cpuXC->readMiscReg(misc_reg_idx));
handleError();
}
}
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::validateState()
{
}
template <class DynInstPtr>
void
Checker<DynInstPtr>::dumpInsts()
{
int num = 0;
InstListIt inst_list_it = --(instList.end());
cprintf("Inst list size: %i\n", instList.size());
while (inst_list_it != instList.end())
{
cprintf("Instruction:%i\n",
num);
cprintf("PC:%#x\n[sn:%lli]\n[tid:%i]\n"
"Completed:%i\n",
(*inst_list_it)->readPC(),
(*inst_list_it)->seqNum,
(*inst_list_it)->threadNumber,
(*inst_list_it)->isCompleted());
cprintf("\n");
inst_list_it--;
++num;
}
}
template
class Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >;
template
class Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >;

336
cpu/checker/cpu.hh Normal file
View file

@ -0,0 +1,336 @@
/*
* Copyright (c) 2002-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __CPU_CHECKER_CPU_HH__
#define __CPU_CHECKER_CPU_HH__
#include <list>
#include <queue>
#include <map>
#include "base/statistics.hh"
#include "config/full_system.hh"
#include "cpu/base.hh"
#include "cpu/base_dyn_inst.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/pc_event.hh"
#include "cpu/sampler/sampler.hh"
#include "cpu/static_inst.hh"
#include "sim/eventq.hh"
// forward declarations
#if FULL_SYSTEM
class Processor;
class AlphaITB;
class AlphaDTB;
class PhysicalMemory;
class RemoteGDB;
class GDBListener;
#else
class Process;
#endif // FULL_SYSTEM
template <class>
class BaseDynInst;
class ExecContext;
class MemInterface;
class Checkpoint;
class CheckerCPU : public BaseCPU
{
protected:
typedef TheISA::MachInst MachInst;
typedef TheISA::MiscReg MiscReg;
public:
// main simulation loop (one cycle)
virtual void init();
struct Params : public BaseCPU::Params
{
#if FULL_SYSTEM
AlphaITB *itb;
AlphaDTB *dtb;
FunctionalMemory *mem;
#else
Process *process;
#endif
bool exitOnError;
};
public:
void post_interrupt(int int_num, int index);
CheckerCPU(Params *p);
virtual ~CheckerCPU();
void setMemory(FunctionalMemory *mem);
FunctionalMemory *memPtr;
#if FULL_SYSTEM
void setSystem(System *system);
System *systemPtr;
#endif
public:
// execution context
CPUExecContext *cpuXC;
ExecContext *xcProxy;
AlphaITB *itb;
AlphaDTB *dtb;
#if FULL_SYSTEM
Addr dbg_vtophys(Addr addr);
bool interval_stats;
#endif
union Result {
uint64_t integer;
float fp;
double dbl;
};
Result result;
// current instruction
MachInst machInst;
// Refcounted pointer to the one memory request.
MemReqPtr memReq;
// Pointer to the sampler that is telling us to switchover.
// Used to signal the completion of the pipe drain and schedule
// the next switchover
Sampler *sampler;
StaticInstPtr curStaticInst;
// number of simulated instructions
Counter numInst;
Counter startNumInst;
std::queue<int> miscRegIdxs;
virtual Counter totalInstructions() const
{
return numInst - startNumInst;
}
// number of simulated loads
Counter numLoad;
Counter startNumLoad;
virtual void serialize(std::ostream &os);
virtual void unserialize(Checkpoint *cp, const std::string &section);
template <class T>
Fault read(Addr addr, T &data, unsigned flags);
template <class T>
Fault write(T data, Addr addr, unsigned flags, uint64_t *res);
// These functions are only used in CPU models that split
// effective address computation from the actual memory access.
void setEA(Addr EA) { panic("SimpleCPU::setEA() not implemented\n"); }
Addr getEA() { panic("SimpleCPU::getEA() not implemented\n"); }
void prefetch(Addr addr, unsigned flags)
{
// need to do this...
}
void writeHint(Addr addr, int size, unsigned flags)
{
// need to do this...
}
Fault copySrcTranslate(Addr src);
Fault copy(Addr dest);
// The register accessor methods provide the index of the
// instruction's operand (e.g., 0 or 1), not the architectural
// register index, to simplify the implementation of register
// renaming. We find the architectural register index by indexing
// into the instruction's own operand index table. Note that a
// raw pointer to the StaticInst is provided instead of a
// ref-counted StaticInstPtr to redice overhead. This is fine as
// long as these methods don't copy the pointer into any long-term
// storage (which is pretty hard to imagine they would have reason
// to do).
uint64_t readIntReg(const StaticInst *si, int idx)
{
return cpuXC->readIntReg(si->srcRegIdx(idx));
}
float readFloatRegSingle(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegSingle(reg_idx);
}
double readFloatRegDouble(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegDouble(reg_idx);
}
uint64_t readFloatRegInt(const StaticInst *si, int idx)
{
int reg_idx = si->srcRegIdx(idx) - TheISA::FP_Base_DepTag;
return cpuXC->readFloatRegInt(reg_idx);
}
void setIntReg(const StaticInst *si, int idx, uint64_t val)
{
cpuXC->setIntReg(si->destRegIdx(idx), val);
result.integer = val;
}
void setFloatRegSingle(const StaticInst *si, int idx, float val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegSingle(reg_idx, val);
result.fp = val;
}
void setFloatRegDouble(const StaticInst *si, int idx, double val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegDouble(reg_idx, val);
result.dbl = val;
}
void setFloatRegInt(const StaticInst *si, int idx, uint64_t val)
{
int reg_idx = si->destRegIdx(idx) - TheISA::FP_Base_DepTag;
cpuXC->setFloatRegInt(reg_idx, val);
result.integer = val;
}
uint64_t readPC() { return cpuXC->readPC(); }
void setNextPC(uint64_t val) {
cpuXC->setNextPC(val);
}
MiscReg readMiscReg(int misc_reg)
{
return cpuXC->readMiscReg(misc_reg);
}
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{
return cpuXC->readMiscRegWithEffect(misc_reg, fault);
}
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
result.integer = val;
miscRegIdxs.push(misc_reg);
return cpuXC->setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
miscRegIdxs.push(misc_reg);
return cpuXC->setMiscRegWithEffect(misc_reg, val);
}
void recordPCChange(uint64_t val) { changedPC = true; }
void recordNextPCChange(uint64_t val) { changedNextPC = true; }
bool translateInstReq(MemReqPtr &req);
void translateDataWriteReq(MemReqPtr &req);
void translateDataReadReq(MemReqPtr &req);
#if FULL_SYSTEM
Fault hwrei() { return cpuXC->hwrei(); }
int readIntrFlag() { return cpuXC->readIntrFlag(); }
void setIntrFlag(int val) { cpuXC->setIntrFlag(val); }
bool inPalMode() { return cpuXC->inPalMode(); }
void ev5_trap(Fault fault) { fault->invoke(xcProxy); }
bool simPalCheck(int palFunc) { return cpuXC->simPalCheck(palFunc); }
#else
// Assume that the normal CPU's call to syscall was successful.
void syscall() { }
#endif
void handleError()
{
if (exitOnError)
panic("Checker found error!");
}
bool checkFlags(MemReqPtr &req);
ExecContext *xcBase() { return xcProxy; }
CPUExecContext *cpuXCBase() { return cpuXC; }
Result unverifiedResult;
MemReqPtr unverifiedReq;
bool changedPC;
bool willChangePC;
uint64_t newPC;
bool changedNextPC;
bool exitOnError;
InstSeqNum youngestSN;
// std::map<Addr, uint64_t> storeBuff;
// typedef std::map<Addr, uint64_t>::iterator map_it;
};
template <class DynInstPtr>
class Checker : public CheckerCPU
{
public:
Checker(Params *p)
: CheckerCPU(p)
{ }
void switchOut(Sampler *s);
void takeOverFrom(BaseCPU *oldCPU);
void tick(DynInstPtr &inst);
void validateInst(DynInstPtr &inst);
void validateExecution(DynInstPtr &inst);
void validateState();
std::list<DynInstPtr> instList;
typedef typename std::list<DynInstPtr>::iterator InstListIt;
void dumpInsts();
};
#endif // __CPU_CHECKER_CPU_HH__

126
cpu/checker/cpu_builder.cc Normal file
View file

@ -0,0 +1,126 @@
#include <string>
#include "cpu/checker/cpu.hh"
#include "cpu/inst_seq.hh"
#include "cpu/ozone/dyn_inst.hh"
#include "cpu/ozone/ozone_impl.hh"
#include "mem/base_mem.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/sim_object.hh"
class OzoneChecker : public Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >
{
public:
OzoneChecker(Params *p)
: Checker<RefCountingPtr<OzoneDynInst<OzoneImpl> > >(p)
{ }
};
////////////////////////////////////////////////////////////////////////
//
// CheckerCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(OzoneChecker)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<FunctionalMemory *> mem;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
SimObjectParam<BaseMem *> icache;
SimObjectParam<BaseMem *> dcache;
Param<bool> defer_registration;
Param<bool> exitOnError;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(OzoneChecker)
BEGIN_INIT_SIM_OBJECT_PARAMS(OzoneChecker)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(mem, "memory"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(icache, "L1 instruction cache object"),
INIT_PARAM(dcache, "L1 data cache object"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(exitOnError, "exit on error"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(OzoneChecker)
CREATE_SIM_OBJECT(OzoneChecker)
{
OzoneChecker::Params *params = new OzoneChecker::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = 0;
params->max_insts_all_threads = 0;
params->max_loads_any_thread = 0;
params->max_loads_all_threads = 0;
params->exitOnError = exitOnError;
params->deferRegistration = defer_registration;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->clock = clock;
// Hack to touch all parameters. Consider not deriving Checker
// from BaseCPU..it's not really a CPU in the end.
Counter temp;
temp = max_insts_any_thread;
temp = max_insts_all_threads;
temp = max_loads_any_thread;
temp = max_loads_all_threads;
BaseMem *cache = icache;
cache = dcache;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->mem = mem;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
OzoneChecker *cpu = new OzoneChecker(params);
return cpu;
}
REGISTER_SIM_OBJECT("OzoneChecker", OzoneChecker)

225
cpu/checker/exec_context.hh Normal file
View file

@ -0,0 +1,225 @@
#ifndef __CPU_CHECKER_EXEC_CONTEXT_HH__
#define __CPU_CHECKER_EXEC_CONTEXT_HH__
#include "cpu/checker/cpu.hh"
#include "cpu/cpu_exec_context.hh"
#include "cpu/exec_context.hh"
class EndQuiesceEvent;
template <class XC>
class CheckerExecContext : public ExecContext
{
public:
CheckerExecContext(XC *actual_xc,
CheckerCPU *checker_cpu)
: actualXC(actual_xc), checkerXC(checker_cpu->cpuXC), checkerCPU(checker_cpu)
{ }
private:
XC *actualXC;
CPUExecContext *checkerXC;
CheckerCPU *checkerCPU;
public:
BaseCPU *getCpuPtr() { return actualXC->getCpuPtr(); }
void setCpuId(int id)
{
actualXC->setCpuId(id);
checkerXC->setCpuId(id);
}
int readCpuId() { return actualXC->readCpuId(); }
FunctionalMemory *getMemPtr() { return actualXC->getMemPtr(); }
#if FULL_SYSTEM
System *getSystemPtr() { return actualXC->getSystemPtr(); }
PhysicalMemory *getPhysMemPtr() { return actualXC->getPhysMemPtr(); }
AlphaITB *getITBPtr() { return actualXC->getITBPtr(); }
AlphaDTB *getDTBPtr() { return actualXC->getDTBPtr(); }
#else
Process *getProcessPtr() { return actualXC->getProcessPtr(); }
#endif
Status status() const { return actualXC->status(); }
void setStatus(Status new_status)
{ actualXC->setStatus(new_status);
checkerXC->setStatus(new_status); }
/// Set the status to Active. Optional delay indicates number of
/// cycles to wait before beginning execution.
void activate(int delay = 1) { actualXC->activate(delay); }
/// Set the status to Suspended.
void suspend() { actualXC->suspend(); }
/// Set the status to Unallocated.
void deallocate() { actualXC->deallocate(); }
/// Set the status to Halted.
void halt() { actualXC->halt(); }
#if FULL_SYSTEM
void dumpFuncProfile() { actualXC->dumpFuncProfile(); }
#endif
void takeOverFrom(ExecContext *oldContext)
{
actualXC->takeOverFrom(oldContext);
checkerXC->takeOverFrom(oldContext);
}
void regStats(const std::string &name) { actualXC->regStats(name); }
void serialize(std::ostream &os) { actualXC->serialize(os); }
void unserialize(Checkpoint *cp, const std::string &section)
{ actualXC->unserialize(cp, section); }
#if FULL_SYSTEM
EndQuiesceEvent *getQuiesceEvent() { return actualXC->getQuiesceEvent(); }
Tick readLastActivate() { return actualXC->readLastActivate(); }
Tick readLastSuspend() { return actualXC->readLastSuspend(); }
void profileClear() { return actualXC->profileClear(); }
void profileSample() { return actualXC->profileSample(); }
#endif
int getThreadNum() { return actualXC->getThreadNum(); }
// @todo: Do I need this?
MachInst getInst() { return actualXC->getInst(); }
// @todo: Do I need this?
void copyArchRegs(ExecContext *xc)
{
actualXC->copyArchRegs(xc);
checkerXC->copyArchRegs(xc);
}
void clearArchRegs()
{
actualXC->clearArchRegs();
checkerXC->clearArchRegs();
}
//
// New accessors for new decoder.
//
uint64_t readIntReg(int reg_idx)
{ return actualXC->readIntReg(reg_idx); }
float readFloatRegSingle(int reg_idx)
{ return actualXC->readFloatRegSingle(reg_idx); }
double readFloatRegDouble(int reg_idx)
{ return actualXC->readFloatRegDouble(reg_idx); }
uint64_t readFloatRegInt(int reg_idx)
{ return actualXC->readFloatRegInt(reg_idx); }
void setIntReg(int reg_idx, uint64_t val)
{
actualXC->setIntReg(reg_idx, val);
checkerXC->setIntReg(reg_idx, val);
}
void setFloatRegSingle(int reg_idx, float val)
{
actualXC->setFloatRegSingle(reg_idx, val);
checkerXC->setFloatRegSingle(reg_idx, val);
}
void setFloatRegDouble(int reg_idx, double val)
{
actualXC->setFloatRegDouble(reg_idx, val);
checkerXC->setFloatRegSingle(reg_idx, val);
}
void setFloatRegInt(int reg_idx, uint64_t val)
{
actualXC->setFloatRegInt(reg_idx, val);
checkerXC->setFloatRegInt(reg_idx, val);
}
uint64_t readPC() { return actualXC->readPC(); }
void setPC(uint64_t val)
{
actualXC->setPC(val);
checkerXC->setPC(val);
checkerCPU->recordPCChange(val);
}
uint64_t readNextPC() { return actualXC->readNextPC(); }
void setNextPC(uint64_t val)
{
actualXC->setNextPC(val);
checkerXC->setNextPC(val);
checkerCPU->recordNextPCChange(val);
}
MiscReg readMiscReg(int misc_reg)
{ return actualXC->readMiscReg(misc_reg); }
MiscReg readMiscRegWithEffect(int misc_reg, Fault &fault)
{ return actualXC->readMiscRegWithEffect(misc_reg, fault); }
Fault setMiscReg(int misc_reg, const MiscReg &val)
{
checkerXC->setMiscReg(misc_reg, val);
return actualXC->setMiscReg(misc_reg, val);
}
Fault setMiscRegWithEffect(int misc_reg, const MiscReg &val)
{
checkerXC->setMiscRegWithEffect(misc_reg, val);
return actualXC->setMiscRegWithEffect(misc_reg, val);
}
unsigned readStCondFailures()
{ return actualXC->readStCondFailures(); }
void setStCondFailures(unsigned sc_failures)
{
checkerXC->setStCondFailures(sc_failures);
actualXC->setStCondFailures(sc_failures);
}
#if FULL_SYSTEM
bool inPalMode() { return actualXC->inPalMode(); }
#endif
// @todo: Fix this!
bool misspeculating() { return actualXC->misspeculating(); }
#if !FULL_SYSTEM
IntReg getSyscallArg(int i) { return actualXC->getSyscallArg(i); }
// used to shift args for indirect syscall
void setSyscallArg(int i, IntReg val)
{
checkerXC->setSyscallArg(i, val);
actualXC->setSyscallArg(i, val);
}
void setSyscallReturn(SyscallReturn return_value)
{
checkerXC->setSyscallReturn(return_value);
actualXC->setSyscallReturn(return_value);
}
// void syscall() { actualXC->syscall(); }
Counter readFuncExeInst() { return actualXC->readFuncExeInst(); }
#endif
};
#endif // __CPU_CHECKER_EXEC_CONTEXT_HH__

View file

@ -0,0 +1,126 @@
#include <string>
#include "cpu/checker/cpu.hh"
#include "cpu/inst_seq.hh"
#include "cpu/o3/alpha_dyn_inst.hh"
#include "cpu/o3/alpha_impl.hh"
#include "mem/base_mem.hh"
#include "sim/builder.hh"
#include "sim/process.hh"
#include "sim/sim_object.hh"
class O3Checker : public Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >
{
public:
O3Checker(Params *p)
: Checker<RefCountingPtr<AlphaDynInst<AlphaSimpleImpl> > >(p)
{ }
};
////////////////////////////////////////////////////////////////////////
//
// CheckerCPU Simulation Object
//
BEGIN_DECLARE_SIM_OBJECT_PARAMS(O3Checker)
Param<Counter> max_insts_any_thread;
Param<Counter> max_insts_all_threads;
Param<Counter> max_loads_any_thread;
Param<Counter> max_loads_all_threads;
#if FULL_SYSTEM
SimObjectParam<AlphaITB *> itb;
SimObjectParam<AlphaDTB *> dtb;
SimObjectParam<FunctionalMemory *> mem;
SimObjectParam<System *> system;
Param<int> cpu_id;
Param<Tick> profile;
#else
SimObjectParam<Process *> workload;
#endif // FULL_SYSTEM
Param<int> clock;
SimObjectParam<BaseMem *> icache;
SimObjectParam<BaseMem *> dcache;
Param<bool> defer_registration;
Param<bool> exitOnError;
Param<bool> function_trace;
Param<Tick> function_trace_start;
END_DECLARE_SIM_OBJECT_PARAMS(O3Checker)
BEGIN_INIT_SIM_OBJECT_PARAMS(O3Checker)
INIT_PARAM(max_insts_any_thread,
"terminate when any thread reaches this inst count"),
INIT_PARAM(max_insts_all_threads,
"terminate when all threads have reached this inst count"),
INIT_PARAM(max_loads_any_thread,
"terminate when any thread reaches this load count"),
INIT_PARAM(max_loads_all_threads,
"terminate when all threads have reached this load count"),
#if FULL_SYSTEM
INIT_PARAM(itb, "Instruction TLB"),
INIT_PARAM(dtb, "Data TLB"),
INIT_PARAM(mem, "memory"),
INIT_PARAM(system, "system object"),
INIT_PARAM(cpu_id, "processor ID"),
INIT_PARAM(profile, ""),
#else
INIT_PARAM(workload, "processes to run"),
#endif // FULL_SYSTEM
INIT_PARAM(clock, "clock speed"),
INIT_PARAM(icache, "L1 instruction cache object"),
INIT_PARAM(dcache, "L1 data cache object"),
INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
INIT_PARAM(exitOnError, "exit on error"),
INIT_PARAM(function_trace, "Enable function trace"),
INIT_PARAM(function_trace_start, "Cycle to start function trace")
END_INIT_SIM_OBJECT_PARAMS(O3Checker)
CREATE_SIM_OBJECT(O3Checker)
{
O3Checker::Params *params = new O3Checker::Params();
params->name = getInstanceName();
params->numberOfThreads = 1;
params->max_insts_any_thread = 0;
params->max_insts_all_threads = 0;
params->max_loads_any_thread = 0;
params->max_loads_all_threads = 0;
params->exitOnError = exitOnError;
params->deferRegistration = defer_registration;
params->functionTrace = function_trace;
params->functionTraceStart = function_trace_start;
params->clock = clock;
// Hack to touch all parameters. Consider not deriving Checker
// from BaseCPU..it's not really a CPU in the end.
Counter temp;
temp = max_insts_any_thread;
temp = max_insts_all_threads;
temp = max_loads_any_thread;
temp = max_loads_all_threads;
BaseMem *cache = icache;
cache = dcache;
#if FULL_SYSTEM
params->itb = itb;
params->dtb = dtb;
params->mem = mem;
params->system = system;
params->cpu_id = cpu_id;
params->profile = profile;
#else
params->process = workload;
#endif
O3Checker *cpu = new O3Checker(params);
return cpu;
}
REGISTER_SIM_OBJECT("O3Checker", O3Checker)

View file

@ -74,4 +74,7 @@ CpuModel('OzoneSimpleCPU', 'ozone_simple_exec.cc',
CpuModel('OzoneCPU', 'ozone_exec.cc',
'#include "cpu/ozone/dyn_inst.hh"',
{ 'CPU_exec_context': 'OzoneDynInst<OzoneImpl>' })
CpuModel('CheckerCPU', 'checker_cpu_exec.cc',
'#include "cpu/checker/cpu.hh"',
{ 'CPU_exec_context': 'CheckerCPU' })