Merge ktlim@zizzer:/bk/m5

into  zamp.eecs.umich.edu:/z/ktlim2/m5-proxyxc

arch/alpha/faults.cc:
    Hand merge.

--HG--
rename : arch/alpha/linux_process.cc => arch/alpha/linux/process.cc
rename : arch/alpha/tru64_process.cc => arch/alpha/tru64/process.cc
extra : convert_revision : 6ea1fae5be0ebd02eff330423d16da63b790516d
This commit is contained in:
Kevin Lim 2006-03-07 20:01:34 -05:00
commit 97c4a84985
36 changed files with 1793 additions and 956 deletions

View file

@ -212,11 +212,6 @@ mysql_sources = Split('''
# Full-system sources
full_system_sources = Split('''
arch/alpha/freebsd/system.cc
arch/alpha/linux/system.cc
arch/alpha/system.cc
arch/alpha/tru64/system.cc
base/crc.cc
base/inet.cc
base/remote_gdb.cc

View file

@ -56,14 +56,18 @@ full_system_sources = Split('''
osfpal.cc
stacktrace.cc
vtophys.cc
system.cc
freebsd/system.cc
linux/system.cc
tru64/system.cc
''')
# Syscall emulation (non-full-system) sources
syscall_emulation_sources = Split('''
common_syscall_emul.cc
linux_process.cc
tru64_process.cc
linux/process.cc
tru64/process.cc
process.cc
''')

View file

@ -30,84 +30,80 @@
#include "cpu/exec_context.hh"
#include "cpu/base.hh"
#include "base/trace.hh"
#include "kern/kernel_stats.hh"
namespace AlphaISA
{
FaultName MachineCheckFault::_name = "mchk";
FaultVect MachineCheckFault::_vect = 0x0401;
FaultStat MachineCheckFault::_stat;
FaultStat MachineCheckFault::_count;
FaultName AlignmentFault::_name = "unalign";
FaultVect AlignmentFault::_vect = 0x0301;
FaultStat AlignmentFault::_stat;
FaultStat AlignmentFault::_count;
FaultName ResetFault::_name = "reset";
FaultVect ResetFault::_vect = 0x0001;
FaultStat ResetFault::_stat;
FaultStat ResetFault::_count;
FaultName ArithmeticFault::_name = "arith";
FaultVect ArithmeticFault::_vect = 0x0501;
FaultStat ArithmeticFault::_stat;
FaultStat ArithmeticFault::_count;
FaultName InterruptFault::_name = "interrupt";
FaultVect InterruptFault::_vect = 0x0101;
FaultStat InterruptFault::_stat;
FaultStat InterruptFault::_count;
FaultName NDtbMissFault::_name = "dtb_miss_single";
FaultVect NDtbMissFault::_vect = 0x0201;
FaultStat NDtbMissFault::_stat;
FaultStat NDtbMissFault::_count;
FaultName PDtbMissFault::_name = "dtb_miss_double";
FaultVect PDtbMissFault::_vect = 0x0281;
FaultStat PDtbMissFault::_stat;
FaultStat PDtbMissFault::_count;
FaultName DtbPageFault::_name = "dfault";
FaultVect DtbPageFault::_vect = 0x0381;
FaultStat DtbPageFault::_stat;
FaultStat DtbPageFault::_count;
FaultName DtbAcvFault::_name = "dfault";
FaultVect DtbAcvFault::_vect = 0x0381;
FaultStat DtbAcvFault::_stat;
FaultStat DtbAcvFault::_count;
FaultName ItbMissFault::_name = "itbmiss";
FaultVect ItbMissFault::_vect = 0x0181;
FaultStat ItbMissFault::_stat;
FaultStat ItbMissFault::_count;
FaultName ItbPageFault::_name = "itbmiss";
FaultVect ItbPageFault::_vect = 0x0181;
FaultStat ItbPageFault::_stat;
FaultStat ItbPageFault::_count;
FaultName ItbAcvFault::_name = "iaccvio";
FaultVect ItbAcvFault::_vect = 0x0081;
FaultStat ItbAcvFault::_stat;
FaultStat ItbAcvFault::_count;
FaultName UnimplementedOpcodeFault::_name = "opdec";
FaultVect UnimplementedOpcodeFault::_vect = 0x0481;
FaultStat UnimplementedOpcodeFault::_stat;
FaultStat UnimplementedOpcodeFault::_count;
FaultName FloatEnableFault::_name = "fen";
FaultVect FloatEnableFault::_vect = 0x0581;
FaultStat FloatEnableFault::_stat;
FaultStat FloatEnableFault::_count;
FaultName PalFault::_name = "pal";
FaultVect PalFault::_vect = 0x2001;
FaultStat PalFault::_stat;
FaultStat PalFault::_count;
FaultName IntegerOverflowFault::_name = "intover";
FaultVect IntegerOverflowFault::_vect = 0x0501;
FaultStat IntegerOverflowFault::_stat;
FaultStat IntegerOverflowFault::_count;
#if FULL_SYSTEM
void AlphaFault::invoke(ExecContext * xc)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", name(), xc->readPC());
xc->getCpuPtr()->recordEvent(csprintf("Fault %s", name()));
assert(!xc->misspeculating());
xc->getCpuPtr()->kernelStats->fault(this);
FaultBase::invoke(xc);
countStat()++;
// exception restart address
if (setRestartAddress() || !xc->inPalMode())
@ -125,43 +121,11 @@ void AlphaFault::invoke(ExecContext * xc)
void ArithmeticFault::invoke(ExecContext * xc)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", name(), xc->readPC());
xc->getCpuPtr()->recordEvent(csprintf("Fault %s", name()));
assert(!xc->misspeculating());
xc->getCpuPtr()->kernelStats->fault(this);
FaultBase::invoke(xc);
panic("Arithmetic traps are unimplemented!");
}
/*void ArithmeticFault::invoke(ExecContext * xc)
{
panic("Arithmetic traps are unimplemented!");
}*/
#endif
} // namespace AlphaISA
/*Fault * ListOfFaults[] = {
(Fault *)&NoFault,
(Fault *)&ResetFault,
(Fault *)&MachineCheckFault,
(Fault *)&ArithmeticFault,
(Fault *)&InterruptFault,
(Fault *)&NDtbMissFault,
(Fault *)&PDtbMissFault,
(Fault *)&AlignmentFault,
(Fault *)&DtbPageFault,
(Fault *)&DtbAcvFault,
(Fault *)&ItbMissFault,
(Fault *)&ItbPageFault,
(Fault *)&ItbAcvFault,
(Fault *)&UnimplementedOpcodeFault,
(Fault *)&FloatEnableFault,
(Fault *)&PalFault,
(Fault *)&IntegerOverflowFault,
};
int NumFaults = sizeof(ListOfFaults) / sizeof(Fault *);*/

View file

@ -38,7 +38,7 @@ namespace AlphaISA
typedef const Addr FaultVect;
class AlphaFault : public virtual FaultBase
class AlphaFault : public FaultBase
{
protected:
virtual bool skipFaultingInstruction() {return false;}
@ -48,6 +48,7 @@ class AlphaFault : public virtual FaultBase
void invoke(ExecContext * xc);
#endif
virtual FaultVect vect() = 0;
virtual FaultStat & countStat() = 0;
};
class MachineCheckFault : public AlphaFault
@ -55,11 +56,11 @@ class MachineCheckFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
bool isMachineCheckFault() {return true;}
};
@ -68,11 +69,11 @@ class AlignmentFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
bool isAlignmentFault() {return true;}
};
@ -91,11 +92,11 @@ class ResetFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class ArithmeticFault : public AlphaFault
@ -105,11 +106,11 @@ class ArithmeticFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
#if FULL_SYSTEM
void invoke(ExecContext * xc);
#endif
@ -122,11 +123,11 @@ class InterruptFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class NDtbMissFault : public AlphaFault
@ -134,11 +135,11 @@ class NDtbMissFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class PDtbMissFault : public AlphaFault
@ -146,11 +147,11 @@ class PDtbMissFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class DtbPageFault : public AlphaFault
@ -158,11 +159,11 @@ class DtbPageFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class DtbAcvFault : public AlphaFault
@ -170,11 +171,11 @@ class DtbAcvFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class ItbMissFault : public AlphaFault
@ -182,11 +183,11 @@ class ItbMissFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class ItbPageFault : public AlphaFault
@ -194,11 +195,11 @@ class ItbPageFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class ItbAcvFault : public AlphaFault
@ -206,11 +207,11 @@ class ItbAcvFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class UnimplementedOpcodeFault : public AlphaFault
@ -218,11 +219,11 @@ class UnimplementedOpcodeFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class FloatEnableFault : public AlphaFault
@ -230,11 +231,11 @@ class FloatEnableFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class PalFault : public AlphaFault
@ -244,11 +245,11 @@ class PalFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
class IntegerOverflowFault : public AlphaFault
@ -256,11 +257,11 @@ class IntegerOverflowFault : public AlphaFault
private:
static FaultName _name;
static FaultVect _vect;
static FaultStat _stat;
static FaultStat _count;
public:
FaultName name() {return _name;}
FaultVect vect() {return _vect;}
FaultStat & stat() {return _stat;}
FaultStat & countStat() {return _count;}
};
} // AlphaISA namespace

View file

@ -27,7 +27,7 @@
*/
#include "arch/alpha/common_syscall_emul.hh"
#include "arch/alpha/linux_process.hh"
#include "arch/alpha/linux/process.hh"
#include "arch/alpha/isa_traits.hh"
#include "base/trace.hh"

View file

@ -31,8 +31,8 @@
#include <string>
#include "arch/alpha/linux_process.hh"
#include "arch/alpha/tru64_process.hh"
#include "arch/alpha/linux/process.hh"
#include "arch/alpha/tru64/process.hh"
#include "base/loader/object_file.hh"
namespace AlphaISA

View file

@ -37,6 +37,7 @@
#include "sim/byteswap.hh"
#include "sim/builder.hh"
using namespace LittleEndianGuest;
AlphaSystem::AlphaSystem(Params *p)

View file

@ -28,7 +28,7 @@
#include "arch/alpha/isa_traits.hh"
#include "arch/alpha/common_syscall_emul.hh"
#include "arch/alpha/tru64_process.hh"
#include "arch/alpha/tru64/process.hh"
#include "cpu/exec_context.hh"
#include "kern/tru64/tru64.hh"
#include "mem/functional/functional.hh"

248
arch/sparc/faults.cc Normal file
View file

@ -0,0 +1,248 @@
/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "arch/sparc/faults.hh"
#include "cpu/exec_context.hh"
#include "cpu/base.hh"
#include "base/trace.hh"
namespace SparcISA
{
FaultName InternalProcessorError::_name = "intprocerr";
TrapType InternalProcessorError::_trapType = 0x029;
FaultPriority InternalProcessorError::_priority = 4;
FaultStat InternalProcessorError::_count;
FaultName MemAddressNotAligned::_name = "unalign";
TrapType MemAddressNotAligned::_trapType = 0x034;
FaultPriority MemAddressNotAligned::_priority = 10;
FaultStat MemAddressNotAligned::_count;
FaultName PowerOnReset::_name = "pow_reset";
TrapType PowerOnReset::_trapType = 0x001;
FaultPriority PowerOnReset::_priority = 0;
FaultStat PowerOnReset::_count;
FaultName WatchDogReset::_name = "watch_dog_reset";
TrapType WatchDogReset::_trapType = 0x002;
FaultPriority WatchDogReset::_priority = 1;
FaultStat WatchDogReset::_count;
FaultName ExternallyInitiatedReset::_name = "extern_reset";
TrapType ExternallyInitiatedReset::_trapType = 0x003;
FaultPriority ExternallyInitiatedReset::_priority = 1;
FaultStat ExternallyInitiatedReset::_count;
FaultName SoftwareInitiatedReset::_name = "software_reset";
TrapType SoftwareInitiatedReset::_trapType = 0x004;
FaultPriority SoftwareInitiatedReset::_priority = 1;
FaultStat SoftwareInitiatedReset::_count;
FaultName REDStateException::_name = "red_counte";
TrapType REDStateException::_trapType = 0x005;
FaultPriority REDStateException::_priority = 1;
FaultStat REDStateException::_count;
FaultName InstructionAccessException::_name = "inst_access";
TrapType InstructionAccessException::_trapType = 0x008;
FaultPriority InstructionAccessException::_priority = 5;
FaultStat InstructionAccessException::_count;
FaultName InstructionAccessMMUMiss::_name = "inst_mmu";
TrapType InstructionAccessMMUMiss::_trapType = 0x009;
FaultPriority InstructionAccessMMUMiss::_priority = 2;
FaultStat InstructionAccessMMUMiss::_count;
FaultName InstructionAccessError::_name = "inst_error";
TrapType InstructionAccessError::_trapType = 0x00A;
FaultPriority InstructionAccessError::_priority = 3;
FaultStat InstructionAccessError::_count;
FaultName IllegalInstruction::_name = "illegal_inst";
TrapType IllegalInstruction::_trapType = 0x010;
FaultPriority IllegalInstruction::_priority = 7;
FaultStat IllegalInstruction::_count;
FaultName PrivelegedOpcode::_name = "priv_opcode";
TrapType PrivelegedOpcode::_trapType = 0x011;
FaultPriority PrivelegedOpcode::_priority = 6;
FaultStat PrivelegedOpcode::_count;
FaultName UnimplementedLDD::_name = "unimp_ldd";
TrapType UnimplementedLDD::_trapType = 0x012;
FaultPriority UnimplementedLDD::_priority = 6;
FaultStat UnimplementedLDD::_count;
FaultName UnimplementedSTD::_name = "unimp_std";
TrapType UnimplementedSTD::_trapType = 0x013;
FaultPriority UnimplementedSTD::_priority = 6;
FaultStat UnimplementedSTD::_count;
FaultName FpDisabled::_name = "fp_disabled";
TrapType FpDisabled::_trapType = 0x020;
FaultPriority FpDisabled::_priority = 8;
FaultStat FpDisabled::_count;
FaultName FpExceptionIEEE754::_name = "fp_754";
TrapType FpExceptionIEEE754::_trapType = 0x021;
FaultPriority FpExceptionIEEE754::_priority = 11;
FaultStat FpExceptionIEEE754::_count;
FaultName FpExceptionOther::_name = "fp_other";
TrapType FpExceptionOther::_trapType = 0x022;
FaultPriority FpExceptionOther::_priority = 11;
FaultStat FpExceptionOther::_count;
FaultName TagOverflow::_name = "tag_overflow";
TrapType TagOverflow::_trapType = 0x023;
FaultPriority TagOverflow::_priority = 14;
FaultStat TagOverflow::_count;
FaultName DivisionByZero::_name = "div_by_zero";
TrapType DivisionByZero::_trapType = 0x028;
FaultPriority DivisionByZero::_priority = 15;
FaultStat DivisionByZero::_count;
FaultName DataAccessException::_name = "data_access";
TrapType DataAccessException::_trapType = 0x030;
FaultPriority DataAccessException::_priority = 12;
FaultStat DataAccessException::_count;
FaultName DataAccessMMUMiss::_name = "data_mmu";
TrapType DataAccessMMUMiss::_trapType = 0x031;
FaultPriority DataAccessMMUMiss::_priority = 12;
FaultStat DataAccessMMUMiss::_count;
FaultName DataAccessError::_name = "data_error";
TrapType DataAccessError::_trapType = 0x032;
FaultPriority DataAccessError::_priority = 12;
FaultStat DataAccessError::_count;
FaultName DataAccessProtection::_name = "data_protection";
TrapType DataAccessProtection::_trapType = 0x033;
FaultPriority DataAccessProtection::_priority = 12;
FaultStat DataAccessProtection::_count;
FaultName LDDFMemAddressNotAligned::_name = "unalign_lddf";
TrapType LDDFMemAddressNotAligned::_trapType = 0x035;
FaultPriority LDDFMemAddressNotAligned::_priority = 10;
FaultStat LDDFMemAddressNotAligned::_count;
FaultName STDFMemAddressNotAligned::_name = "unalign_stdf";
TrapType STDFMemAddressNotAligned::_trapType = 0x036;
FaultPriority STDFMemAddressNotAligned::_priority = 10;
FaultStat STDFMemAddressNotAligned::_count;
FaultName PrivelegedAction::_name = "priv_action";
TrapType PrivelegedAction::_trapType = 0x037;
FaultPriority PrivelegedAction::_priority = 11;
FaultStat PrivelegedAction::_count;
FaultName LDQFMemAddressNotAligned::_name = "unalign_ldqf";
TrapType LDQFMemAddressNotAligned::_trapType = 0x038;
FaultPriority LDQFMemAddressNotAligned::_priority = 10;
FaultStat LDQFMemAddressNotAligned::_count;
FaultName STQFMemAddressNotAligned::_name = "unalign_stqf";
TrapType STQFMemAddressNotAligned::_trapType = 0x039;
FaultPriority STQFMemAddressNotAligned::_priority = 10;
FaultStat STQFMemAddressNotAligned::_count;
FaultName AsyncDataError::_name = "async_data";
TrapType AsyncDataError::_trapType = 0x040;
FaultPriority AsyncDataError::_priority = 2;
FaultStat AsyncDataError::_count;
//The enumerated faults
FaultName CleanWindow::_name = "clean_win";
TrapType CleanWindow::_baseTrapType = 0x024;
FaultPriority CleanWindow::_priority = 10;
FaultStat CleanWindow::_count;
FaultName InterruptLevelN::_name = "interrupt_n";
TrapType InterruptLevelN::_baseTrapType = 0x041;
FaultStat InterruptLevelN::_count;
FaultName SpillNNormal::_name = "spill_n_normal";
TrapType SpillNNormal::_baseTrapType = 0x080;
FaultPriority SpillNNormal::_priority = 9;
FaultStat SpillNNormal::_count;
FaultName SpillNOther::_name = "spill_n_other";
TrapType SpillNOther::_baseTrapType = 0x0A0;
FaultPriority SpillNOther::_priority = 9;
FaultStat SpillNOther::_count;
FaultName FillNNormal::_name = "fill_n_normal";
TrapType FillNNormal::_baseTrapType = 0x0C0;
FaultPriority FillNNormal::_priority = 9;
FaultStat FillNNormal::_count;
FaultName FillNOther::_name = "fill_n_other";
TrapType FillNOther::_baseTrapType = 0x0E0;
FaultPriority FillNOther::_priority = 9;
FaultStat FillNOther::_count;
FaultName TrapInstruction::_name = "trap_inst_n";
TrapType TrapInstruction::_baseTrapType = 0x100;
FaultPriority TrapInstruction::_priority = 16;
FaultStat TrapInstruction::_count;
#if FULL_SYSTEM
void SparcFault::invoke(ExecContext * xc)
{
FaultBase::invoke(xc);
countStat()++;
//Use the SPARC trap state machine
/*// exception restart address
if (setRestartAddress() || !xc->inPalMode())
xc->setMiscReg(AlphaISA::IPR_EXC_ADDR, xc->regs.pc);
if (skipFaultingInstruction()) {
// traps... skip faulting instruction.
xc->setMiscReg(AlphaISA::IPR_EXC_ADDR,
xc->readMiscReg(AlphaISA::IPR_EXC_ADDR) + 4);
}
if (!xc->inPalMode())
AlphaISA::swap_palshadow(&(xc->regs), true);
xc->regs.pc = xc->readMiscReg(AlphaISA::IPR_PAL_BASE) + vect();
xc->regs.npc = xc->regs.pc + sizeof(MachInst);*/
}
#endif
} // namespace SparcISA

587
arch/sparc/faults.hh Normal file
View file

@ -0,0 +1,587 @@
/*
* Copyright (c) 2003-2005 The Regents of The University of Michigan
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met: redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer;
* redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution;
* neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __ALPHA_FAULTS_HH__
#define __ALPHA_FAULTS_HH__
#include "sim/faults.hh"
// The design of the "name" and "vect" functions is in sim/faults.hh
namespace SparcISA
{
typedef const uint32_t TrapType;
typedef const uint32_t FaultPriority;
class SparcFault : public FaultBase
{
public:
#if FULL_SYSTEM
void invoke(ExecContext * xc);
#endif
virtual TrapType trapType() = 0;
virtual FaultPriority priority() = 0;
virtual FaultStat & countStat() = 0;
};
class InternalProcessorError : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
bool isMachineCheckFault() {return true;}
};
class MemAddressNotAligned : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
bool isAlignmentFault() {return true;}
};
static inline Fault genMachineCheckFault()
{
return new InternalProcessorError;
}
static inline Fault genAlignmentFault()
{
return new MemAddressNotAligned;
}
class PowerOnReset : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class WatchDogReset : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class ExternallyInitiatedReset : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class SoftwareInitiatedReset : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class REDStateException : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class InstructionAccessException : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class InstructionAccessMMUMiss : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class InstructionAccessError : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class IllegalInstruction : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class PrivelegedOpcode : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class UnimplementedLDD : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class UnimplementedSTD : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class FpDisabled : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class FpExceptionIEEE754 : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class FpExceptionOther : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class TagOverflow : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class DivisionByZero : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class DataAccessException : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class DataAccessMMUMiss : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class DataAccessError : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class DataAccessProtection : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class LDDFMemAddressNotAligned : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class STDFMemAddressNotAligned : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class PrivelegedAction : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class LDQFMemAddressNotAligned : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class STQFMemAddressNotAligned : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class AsyncDataError : public SparcFault
{
private:
static FaultName _name;
static TrapType _trapType;
static FaultPriority _priority;
static FaultStat _count;
public:
FaultName name() {return _name;}
TrapType trapType() {return _trapType;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class EnumeratedFault : public SparcFault
{
protected:
uint32_t _n;
virtual TrapType baseTrapType() = 0;
public:
EnumeratedFault(uint32_t n) : SparcFault() {_n = n;}
TrapType trapType() {return baseTrapType() + _n;}
};
class CleanWindow : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
CleanWindow(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class InterruptLevelN : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
InterruptLevelN(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return 32 - _n;}
FaultStat & countStat() {return _count;}
};
class SpillNNormal : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
SpillNNormal(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class SpillNOther : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
SpillNOther(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class FillNNormal : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
FillNNormal(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class FillNOther : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
FillNOther(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
class TrapInstruction : public EnumeratedFault
{
private:
static FaultName _name;
static TrapType _baseTrapType;
static FaultPriority _priority;
static FaultStat _count;
TrapType baseTrapType() {return _baseTrapType;}
public:
TrapInstruction(uint32_t n) : EnumeratedFault(n) {;}
FaultName name() {return _name;}
FaultPriority priority() {return _priority;}
FaultStat & countStat() {return _count;}
};
} // SparcISA namespace
#endif // __FAULTS_HH__

View file

@ -4,79 +4,126 @@
//
output header {{
struct condCodes
{
uint8_t c:1;
uint8_t v:1;
uint8_t z:1;
uint8_t n:1;
}
enum condTest
{
Always=0x8,
Never=0x0,
NotEqual=0x9,
Equal=0x1,
Greater=0xA,
LessOrEqual=0x2,
GreaterOrEqual=0xB,
Less=0x3,
GreaterUnsigned=0xC,
LessOrEqualUnsigned=0x4,
CarryClear=0xD,
CarrySet=0x5,
Positive=0xE,
Negative=0x6,
OverflowClear=0xF,
OverflowSet=0x7
}
/**
* Base class for all SPARC static instructions.
*/
class SparcStaticInst : public StaticInst<SPARCISA>
class SparcStaticInst : public StaticInst
{
protected:
// Constructor.
SparcStaticInst(const char *mnem, MachInst _machInst, OpClass __opClass)
: StaticInst<SPARCISA>(mnem, _machInst, __opClass)
protected:
// Constructor.
SparcStaticInst(const char *mnem,
MachInst _machInst, OpClass __opClass)
: StaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
bool passesCondition(struct {uint8_t c:1; uint8_t v:1; uint8_t z:1; uint8_t n:1} codes, uint8_t condition);
bool passesCondition(condCodes codes, condTest condition);
}};
output decoder {{
std::string SparcStaticInst::generateDisassembly(Addr pc, const SymbolTable *symtab) const
std::string SparcStaticInst::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
std::stringstream ss;
std::stringstream ss;
ccprintf(ss, "%-10s ", mnemonic);
ccprintf(ss, "%-10s ", mnemonic);
// just print the first two source regs... if there's
// a third one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
// just print the first two source regs... if there's
// a third one, it's a read-modify-write dest (Rc),
// e.g. for CMOVxx
if(_numSrcRegs > 0)
{
printReg(ss, _srcRegIdx[0]);
}
if(_numSrcRegs > 1)
{
ss << ",";
printReg(ss, _srcRegIdx[1]);
}
// just print the first dest... if there's a second one,
// it's generally implicit
if(_numDestRegs > 0)
{
if(_numSrcRegs > 0)
{
printReg(ss, _srcRegIdx[0]);
}
if(_numSrcRegs > 1)
{
ss << ",";
printReg(ss, _srcRegIdx[1]);
}
ss << ",";
printReg(ss, _destRegIdx[0]);
}
// just print the first dest... if there's a second one,
// it's generally implicit
if(_numDestRegs > 0)
{
if(_numSrcRegs > 0)
ss << ",";
printReg(ss, _destRegIdx[0]);
}
return ss.str();
return ss.str();
}
bool passesCondition(struct {uint8_t c:1; uint8_t v:1; uint8_t z:1; uint8_t n:1} codes, uint8_t condition)
bool passesCondition(condCodes codes, condTest condition)
{
switch(condition)
{
case 0b1000: return true;
case 0b0000: return false;
case 0b1001: return !codes.z;
case 0b0001: return codes.z;
case 0b1010: return !(codes.z | (codes.n ^ codes.v));
case 0b0010: return codes.z | (codes.n ^ codes.v);
case 0b1011: return !(codes.n ^ codes.v);
case 0b0011: return (codes.n ^ codes.v);
case 0b1100: return !(codes.c | codes.z);
case 0b0100: return (codes.c | codes.z);
case 0b1101: return !codes.c;
case 0b0101: return codes.c;
case 0b1110: return !codes.n;
case 0b0110: return codes.n;
case 0b1111: return !codes.v;
case 0b0111: return codes.v;
}
switch(condition)
{
case Always:
return true;
case Never:
return false;
case NotEqual:
return !codes.z;
case Equal:
return codes.z;
case Greater:
return !(codes.z | (codes.n ^ codes.v));
case LessOrEqual:
return codes.z | (codes.n ^ codes.v);
case GreaterOrEqual:
return !(codes.n ^ codes.v);
case Less:
return (codes.n ^ codes.v);
case GreaterUnsigned:
return !(codes.c | codes.z);
case LessOrEqualUnsigned:
return (codes.c | codes.z);
case CarryClear:
return !codes.c;
case CarrySet:
return codes.c;
case Positive:
return !codes.n;
case Negative:
return codes.n;
case OverflowClear:
return !codes.v;
case OverflowSet:
return codes.v;
}
}
}};

View file

@ -3,55 +3,64 @@
// The actual decoder specification
//
decode OP default Trap::unknown({{illegal_instruction}}) {
decode OP default Trap::unknown({{IllegalInstruction}}) {
0x0: decode OP2 {
0x0: Trap::illtrap({{illegal_instruction}}); //ILLTRAP
0x1: Branch::bpcc({{
switch((CC12 << 1) | CC02)
{
case 1: case 3:
throw illegal_instruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND2))
;//branchHere
break;
}
}});//BPcc
0x2: Branch::bicc({{
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
}});//Bicc
0x3: Branch::bpr({{
switch(RCOND)
{
case 0: case 4:
throw illegal_instruction;
case 1:
if(Rs1 == 0) ;//branchHere
break;
case 2:
if(Rs1 <= 0) ;//branchHere
break;
case 3:
if(Rs1 < 0) ;//branchHere
break;
case 5:
if(Rs1 != 0) ;//branchHere
break;
case 6:
if(Rs1 > 0) ;//branchHere
break;
case 7:
if(Rs1 >= 0) ;//branchHere
break;
}
0x0: Trap::illtrap({{illegal_instruction}}); //ILLTRAP
0x1: Branch::bpcc({{
switch((CC12 << 1) | CC02)
{
case 1:
case 3:
fault = new IllegalInstruction;
case 0:
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
break;
case 2:
if(passesCondition(xc->regs.MiscRegs.ccrFields.xcc, COND2))
;//branchHere
break;
}
}});//BPcc
0x2: Branch::bicc({{
if(passesCondition(xc->regs.MiscRegs.ccrFields.icc, COND2))
;//branchHere
}});//Bicc
0x3: Branch::bpr({{
switch(RCOND)
{
case 0:
case 4:
fault = new IllegalInstruction;
case 1:
if(Rs1 == 0)
;//branchHere
break;
case 2:
if(Rs1 <= 0)
;//branchHere
break;
case 3:
if(Rs1 < 0)
;//branchHere
break;
case 5:
if(Rs1 != 0)
;//branchHere
break;
case 6:
if(Rs1 > 0)
;//branchHere
break;
case 7:
if(Rs1 >= 0)
;//branchHere
break;
}
}}); //BPr
0x4: IntegerOp::sethi({{Rd = (IMM22 << 10) & 0xFFFFFC00;}}); //SETHI (or NOP if rd == 0 and imm == 0)
//SETHI (or NOP if rd == 0 and imm == 0)
0x4: IntegerOp::sethi({{Rd = (IMM22 << 10) & 0xFFFFFC00;}});
0x5: Trap::fbpfcc({{throw fp_disabled;}}); //FBPfcc
0x6: Trap::fbfcc({{throw fp_disabled;}}); //FBfcc
}
@ -60,150 +69,165 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
Rd = xc->pc;
}});
0x2: decode OP3 {
format IntegerOp {
0x00: add({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
Rd = Rs1.sdw + val2;
}});//ADD
0x01: and({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & val2;
}});//AND
0x02: or({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | val2;
}});//OR
0x03: xor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw ^ val2;
}});//XOR
0x04: sub({{
INT64 val2 = ~((UINT64)(I ? SIMM13.sdw : Rs2.udw))+1;
Rd = Rs1.sdw + val2;
}});//SUB
0x05: andn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & ~val2;
}});//ANDN
0x06: orn({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | ~val2;
}});//ORN
0x07: xnor({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = ~(Rs1.udw ^ val2);
}});//XNOR
0x08: addc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = Rs1.sdw + val2 + carryin;
}});//ADDC
0x09: mulx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 * val2;
}});//MULX
0x0A: umul({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//UMUL
0x0B: smul({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2.sdw);
rd.sdw = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//SMUL
0x0C: subc({{
INT64 val2 = ~((INT64)(I ? SIMM13.sdw : Rs2.sdw))+1;
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd.sdw = Rs1.sdw + val2 + carryin;
}});//SUBC
0x0D: udivx({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;
}});//UDIVX
0x0E: udiv({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;
}}); //UDIV
0x0F: sdiv({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;
}});//SDIV
}
format IntegerOpCc {
0x10: addcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDcc
0x11: andcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDcc
0x12: orcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORcc
0x13: xorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 ^ val2;}}
,{{0}},{{0}},{{0}},{{0}});//XORcc
0x14: subcc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 - val2;}},
{{((Rs1 & 0xFFFFFFFF + (~val2) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~val2) >> 1) + ((Rs1 | ~val2) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBcc
0x15: andncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ANDNcc
0x16: orncc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | ~val2;}}
,{{0}},{{0}},{{0}},{{0}});//ORNcc
0x17: xnorcc({{
INT64 val2 = (I ? SIMM13.sdw : Rs2);
Rd = ~(Rs1 ^ val2);}}
,{{0}},{{0}},{{0}},{{0}});//XNORcc
0x18: addccc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + val2 + carryin;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31 + carryin)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + ((Rs1 & val2) | (carryin & (Rs1 | val2)) & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDCcc
0x1A: umulcc({{
UINT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//UMULcc
format IntegerOp {
0x00: add({{
int64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
Rd = Rs1.sdw + val2;
}});//ADD
0x01: and({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & val2;
}});//AND
0x02: or({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | val2;
}});//OR
0x03: xor({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw ^ val2;
}});//XOR
0x04: sub({{
int64_t val2 = ~((uint64_t)(I ? SIMM13.sdw : Rs2.udw))+1;
Rd = Rs1.sdw + val2;
}});//SUB
0x05: andn({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw & ~val2;
}});//ANDN
0x06: orn({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = Rs1.udw | ~val2;
}});//ORN
0x07: xnor({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = ~(Rs1.udw ^ val2);
}});//XNOR
0x08: addc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
int64_t carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = Rs1.sdw + val2 + carryin;
}});//ADDC
0x09: mulx({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 * val2;
}});//MULX
0x0A: umul({{
uint64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2.udw);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//UMUL
0x0B: smul({{
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2.sdw);
rd.sdw = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;
}});//SMUL
0x0C: subc({{
int64_t val2 = ~((int64_t)(I ? SIMM13.sdw : Rs2.sdw))+1;
int64_t carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd.sdw = Rs1.sdw + val2 + carryin;
}});//SUBC
0x0D: udivx({{
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;
}});//UDIVX
0x0E: udiv({{
uint32_t resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0)
fault = new DivisionByZero;
resTemp = (uint64_t)((xc->regs.MiscRegs.yFields.value << 32)
| Rs1.udw<31:0>) / val2;
int32_t overflow = (resTemp<63:32> != 0);
if(overflow)
rd.udw = resTemp = 0xFFFFFFFF;
else
rd.udw = resTemp;
}}); //UDIV
0x0F: sdiv({{
int32_t resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0)
fault = new DivisionByZero;
Rd.sdw = (int64_t)((xc->regs.MiscRegs.yFields.value << 32) |
Rs1.sdw<31:0>) / val2;
resTemp = Rd.sdw;
int32_t overflow = (resTemp<63:31> != 0);
int32_t underflow =
(resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow)
rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow)
rd.udw = resTemp = 0xFFFFFFFF80000000;
else
rd.udw = resTemp;
}});//SDIV
}
format IntegerOpCc {
0x10: addcc({{
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDcc
0x11: andcc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & val2;}},
{{0}},{{0}},{{0}},{{0}});//ANDcc
0x12: orcc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | val2;}},
{{0}},{{0}},{{0}},{{0}});//ORcc
0x13: xorcc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 ^ val2;}},
{{0}},{{0}},{{0}},{{0}});//XORcc
0x14: subcc({{
int64_t resTemp, val2 = (int64_t)(I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 - val2;}},
{{((Rs1 & 0xFFFFFFFF + (~val2) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (~val2) >> 1) +
((Rs1 | ~val2) & 0x1))<63:>}},
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBcc
0x15: andncc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 & ~val2;}},
{{0}},{{0}},{{0}},{{0}});//ANDNcc
0x16: orncc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = Rs1 | ~val2;}},
{{0}},{{0}},{{0}},{{0}});//ORNcc
0x17: xnorcc({{
int64_t val2 = (I ? SIMM13.sdw : Rs2);
Rd = ~(Rs1 ^ val2);}},
{{0}},{{0}},{{0}},{{0}});//XNORcc
0x18: addccc({{
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + val2 + carryin;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31
+ carryin)}},
{{Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>}},
{{((Rs1 >> 1) + (val2 >> 1) +
((Rs1 & val2) | (carryin & (Rs1 | val2)) & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//ADDCcc
0x1A: umulcc({{
uint64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.udw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}},
{{0}},{{0}},{{0}},{{0}});//UMULcc
0x1B: smulcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1.sdw<31:0> * val2<31:0>;
xc->regs.MiscRegs.yFields.value = resTemp<63:32>;}}
,{{0}},{{0}},{{0}},{{0}});//SMULcc
0x1C: subccc({{
INT64 resTemp, val2 = (INT64)(I ? SIMM13.sdw : Rs2);
INT64 carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
int64_t resTemp, val2 = (int64_t)(I ? SIMM13.sdw : Rs2);
int64_t carryin = xc->regs.MiscRegs.ccrfields.iccfields.c;
Rd = resTemp = Rs1 + ~(val2 + carryin) + 1;}},
{{((Rs1 & 0xFFFFFFFF + (~(val2 + carryin)) & 0xFFFFFFFF + 1) >> 31)}},
{{Rs1<31:> != val2<31:> && Rs1<31:> != resTemp<31:>}},
@ -211,15 +235,15 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
{{Rs1<63:> != val2<63:> && Rs1<63:> != resTemp<63:>}}
);//SUBCcc
0x1D: udivxcc({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.udw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.udw);
if(val2 == 0) throw division_by_zero;
Rd.udw = Rs1.udw / val2;}}
,{{0}},{{0}},{{0}},{{0}});//UDIVXcc
0x1E: udivcc({{
UINT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
uint32_t resTemp, val2 = (I ? SIMM13.sw : Rs2.udw<31:0>);
if(val2 == 0) throw division_by_zero;
resTemp = (UINT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
INT32 overflow = (resTemp<63:32> != 0);
resTemp = (uint64_t)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.udw<31:0>) / val2;
int32_t overflow = (resTemp<63:32> != 0);
if(overflow) rd.udw = resTemp = 0xFFFFFFFF;
else rd.udw = resTemp;}},
{{0}},
@ -228,11 +252,11 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
{{0}}
);//UDIVcc
0x1F: sdivcc({{
INT32 resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
int32_t resTemp, val2 = (I ? SIMM13.sw : Rs2.sdw<31:0>);
if(val2 == 0) throw division_by_zero;
Rd.sdw = resTemp = (INT64)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
INT32 overflow = (resTemp<63:31> != 0);
INT32 underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
Rd.sdw = resTemp = (int64_t)((xc->regs.MiscRegs.yFields.value << 32) | Rs1.sdw<31:0>) / val2;
int32_t overflow = (resTemp<63:31> != 0);
int32_t underflow = (resTemp<63:> && resTemp<62:31> != 0xFFFFFFFF);
if(overflow) rd.udw = resTemp = 0x7FFFFFFF;
else if(underflow) rd.udw = resTemp = 0xFFFFFFFF80000000;
else rd.udw = resTemp;}},
@ -242,27 +266,27 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
{{0}}
);//SDIVcc
0x20: taddcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDcc
0x21: tsubcc({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);}},
{{(Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
{{((Rs1 >> 1) + (val2 >> 1) + (Rs1 & val2 & 0x1))<63:>}},
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBcc
0x22: taddcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
@ -270,9 +294,9 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TADDccTV
0x23: tsubcctv({{
INT64 resTemp, val2 = (I ? SIMM13.sdw : Rs2);
int64_t resTemp, val2 = (I ? SIMM13.sdw : Rs2);
Rd = resTemp = Rs1 + val2;
INT32 overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
int32_t overflow = Rs1<1:0> || val2<1:0> || (Rs1<31:> == val2<31:> && val2<31:> != resTemp<31:>);
if(overflow) throw tag_overflow;}},
{{((Rs1 & 0xFFFFFFFF + val2 & 0xFFFFFFFF) >> 31)}},
{{overflow}},
@ -280,9 +304,9 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
{{Rs1<63:> == val2<63:> && val2<63:> != resTemp<63:>}}
);//TSUBccTV
0x24: mulscc({{
INT64 resTemp, multiplicand = (I ? SIMM13.sdw : Rs2);
INT32 multiplier = Rs1<31:0>;
INT32 savedLSB = Rs1<0:>;
int64_t resTemp, multiplicand = (I ? SIMM13.sdw : Rs2);
int32_t multiplier = Rs1<31:0>;
int32_t savedLSB = Rs1<0:>;
multiplier = multipler<31:1> |
((xc->regs.MiscRegs.ccrFields.iccFields.n
^ xc->regs.MiscRegs.ccrFields.iccFields.v) << 32);
@ -368,14 +392,14 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}
}});//MOVcc
0x2D: sdivx({{
INT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
int64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
if(val2 == 0) throw division_by_zero;
Rd.sdw = Rs1.sdw / val2;
}});//SDIVX
0x2E: decode RS1 {
0x0: IntegerOp::popc({{
INT64 count = 0, val2 = (I ? SIMM13.sdw : Rs2.sdw);
UINT8 oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}
int64_t count = 0, val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint8_t oneBits[] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}
for(unsigned int x = 0; x < 16; x++)
{
count += oneBits[val2 & 0xF];
@ -384,7 +408,7 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}});//POPC
}
0x2F: movr({{
UINT64 val2 = (I ? SIMM10.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM10.sdw : Rs2.sdw);
switch(RCOND)
{
case 0: case 4:
@ -412,19 +436,19 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}});//MOVR
0x30: decode RD {
0x0: wry({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.y = Rs1 ^ val2;
}});//WRY
0x2: wrccr({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.ccr = Rs1 ^ val2;
}});//WRCCR
0x3: wrasi({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRASI
0x6: wrfprs({{
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.asi = Rs1 ^ val2;
}});//WRFPRS
0xF: Trap::sir({{software_initiated_reset}}); //SIR
@ -435,63 +459,63 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}
0x32: decode RD {
0x0: wrprtpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x1: wrprtnpc({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tnpc[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x2: wrprtstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tstate[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x3: wrprtt({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tt[xc->regs.MiscRegs.tl] = Rs1 ^ val2;
}});
0x4: wrprtick({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tick = Rs1 ^ val2;
}});
0x5: wrprtba({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tba = Rs1 ^ val2;
}});
0x6: wrprpstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pstate = Rs1 ^ val2;
}});
0x7: wrprtl({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.tl = Rs1 ^ val2;
}});
0x8: wrprpil({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.pil = Rs1 ^ val2;
}});
0x9: wrprcwp({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cwp = Rs1 ^ val2;
}});
0xA: wrprcansave({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cansave = Rs1 ^ val2;
}});
0xB: wrprcanrestore({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.canrestore = Rs1 ^ val2;
}});
0xC: wrprcleanwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.cleanwin = Rs1 ^ val2;
}});
0xD: wrprotherwin({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.otherwin = Rs1 ^ val2;
}});
0xE: wrprwstate({{checkPriv
UINT64 val2 = (I ? SIMM13.sdw : Rs2.sdw);
uint64_t val2 = (I ? SIMM13.sdw : Rs2.sdw);
xc->regs.MiscRegs.wstate = Rs1 ^ val2;
}});
}
@ -532,7 +556,7 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
0x01: ldub({{Rd.ub = Mem.ub;}}); //LDUB
0x02: lduh({{Rd.uhw = Mem.uhw;}}); //LDUH
0x03: ldd({{
UINT64 val = Mem.udw;
uint64_t val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}});//LDD
@ -553,7 +577,7 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}}); //LDSTUB
0x0E: stx({{Rd.udw = Mem.udw;}}); //STX
0x0F: swap({{
UINT32 temp = Rd.uw;
uint32_t temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAP
@ -561,7 +585,7 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
0x11: lduba({{Rd.ub = Mem.ub;}}); //LDUBA
0x12: lduha({{Rd.uhw = Mem.uhw;}}); //LDUHA
0x13: ldda({{
UINT64 val = Mem.udw;
uint64_t val = Mem.udw;
setIntReg(RD & (~1), val<31:0>);
setIntReg(RD | 1, val<63:32>);
}}); //LDDA
@ -582,7 +606,7 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
}}); //LDSTUBA
0x1E: stxa({{Mem.sdw = Rd.sdw}}); //STXA
0x1F: swapa({{
UINT32 temp = Rd.uw;
uint32_t temp = Rd.uw;
Rd.uw = Mem.uw;
Mem.uw = temp;
}}); //SWAPA
@ -621,14 +645,14 @@ decode OP default Trap::unknown({{illegal_instruction}}) {
0x3C: Cas::casa(
{{UINT64 val = Mem.uw;
{{uint64_t val = Mem.uw;
if(Rs2.uw == val)
Mem.uw = Rd.uw;
Rd.uw = val;
}}); //CASA
0x3D: Noop::prefetcha({{ }}); //PREFETCHA
0x3E: Cas::casxa(
{{UINT64 val = Mem.udw;
{{uint64_t val = Mem.udw;
if(Rs2 == val)
Mem.udw = Rd;
Rd = val;

View file

@ -11,16 +11,17 @@ def template BasicDeclare {{
*/
class %(class_name)s : public %(base_class)s
{
public:
/// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
public:
// Constructor.
%(class_name)s(MachInst machInst);
%(BasicExecDeclare)s
};
}};
// Basic instruction class constructor template.
def template BasicConstructor {{
inline %(class_name)s::%(class_name)s(MachInst machInst) : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
inline %(class_name)s::%(class_name)s(MachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(op_class)s)
{
%(constructor)s;
}
@ -28,20 +29,21 @@ def template BasicConstructor {{
// Basic instruction class execute method template.
def template BasicExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
Fault fault = No_Fault;
Fault fault = NoFault;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
%(fp_enable_check)s;
%(op_decl)s;
%(op_rd)s;
%(code)s;
if(fault == No_Fault)
{
%(op_wb)s;
}
return fault;
if(fault == NoFault)
{
%(op_wb)s;
}
return fault;
}
}};
@ -57,7 +59,8 @@ def template BasicDecodeWithMnemonic {{
// The most basic instruction format... used only for a few misc. insts
def format BasicOperate(code, *flags) {{
iop = InstObjParams(name, Name, 'SparcStaticInst', CodeBlock(code), flags)
iop = InstObjParams(name, Name, 'SparcStaticInst',
CodeBlock(code), flags)
header_output = BasicDeclare.subst(iop)
decoder_output = BasicConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)

View file

@ -9,48 +9,44 @@ output header {{
*/
class Branch : public SparcStaticInst
{
protected:
protected:
// Constructor
Branch(const char *mnem, MachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
/// Constructor
Branch(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
return "Branch instruction\n";
}
}};
def template BranchExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
checkPriv;
//Attempt to execute the instruction
Fault fault = NoFault;
checkPriv;
%(op_decl)s;
%(op_rd)s;
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
%(op_decl)s;
%(op_rd)s;
%(code)s;
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return No_Fault;
return fault;
}
}};

View file

@ -9,21 +9,23 @@ output header {{
*/
class IntegerOp : public SparcStaticInst
{
protected:
protected:
// Constructor
IntegerOp(const char *mnem, MachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
/// Constructor
IntegerOp(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string IntegerOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
std::string IntegerOp::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
return "Integer instruction\n";
}
}};

View file

@ -9,48 +9,43 @@ output header {{
*/
class Mem : public SparcStaticInst
{
protected:
protected:
/// Constructor
Mem(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
// Constructor
Mem(const char *mnem, MachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Mem::generateDisassembly(Addr pc, const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
return "Memory instruction\n";
}
}};
def template MemExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
//Attempt to execute the instruction
try
{
%(op_decl)s;
%(op_rd)s;
ea_code
%(code)s;
}
//If we have an exception for some reason,
//deal with it
catch(SparcException except)
{
//Deal with exception
return No_Fault;
}
Fault fault = NoFault;
%(op_decl)s;
%(op_rd)s;
ea_code
%(code)s;
if(fault == NoFault)
{
//Write the resulting state to the execution context
%(op_wb)s;
}
return No_Fault;
return fault;
}
}};

View file

@ -5,33 +5,36 @@
output header {{
/**
* Base class for integer operations.
* Noop class.
*/
class Noop : public SparcStaticInst
{
protected:
protected:
// Constructor
Noop(const char *mnem, MachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
/// Constructor
Noop(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Noop::generateDisassembly(Addr pc, const SymbolTable *symtab) const
std::string Noop::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
return "Noop\n";
}
}};
def template NoopExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
//Nothing to see here, move along
return No_Fault;
//Nothing to see here, move along
return NoFault;
}
}};

View file

@ -9,35 +9,33 @@ output header {{
*/
class Trap : public SparcStaticInst
{
protected:
protected:
/// Constructor
Trap(const char *mnem, MachInst _machInst, OpClass __opClass) : SparcStaticInst(mnem, _machInst, __opClass)
{
}
// Constructor
Trap(const char *mnem, MachInst _machInst, OpClass __opClass) :
SparcStaticInst(mnem, _machInst, __opClass)
{
}
std::string generateDisassembly(Addr pc, const SymbolTable *symtab) const;
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
};
}};
output decoder {{
std::string Trap::generateDisassembly(Addr pc, const SymbolTable *symtab) const
std::string Trap::generateDisassembly(Addr pc,
const SymbolTable *symtab) const
{
return "Disassembly of integer instruction\n";
return "Trap instruction\n";
}
}};
def template TrapExecute {{
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc, Trace::InstRecord *traceData) const
Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
Trace::InstRecord *traceData) const
{
//Call into the trap handler with the appropriate fault
return No_Fault;
}
//Write the resulting state to the execution context
%(op_wb)s;
return No_Fault;
//TODO: set up a software fault and return it.
return NoFault;
}
}};

View file

@ -9,8 +9,9 @@ output header {{
#include <iomanip>
#include "cpu/static_inst.hh"
#include "traps.hh"
#include "arch/sparc/faults.hh"
#include "mem/mem_req.hh" // some constructors use MemReq flags
#include "arch/sparc/isa_traits.hh"
}};
output decoder {{
@ -22,6 +23,8 @@ output decoder {{
#if defined(linux)
#include <fenv.h>
#endif
using namespace SparcISA;
}};
output exec {{

View file

@ -22,11 +22,10 @@ def operands {{
#'Fa': ('FloatReg', 'df', 'FA', 'IsFloating', 1),
#'Fb': ('FloatReg', 'df', 'FB', 'IsFloating', 2),
#'Fc': ('FloatReg', 'df', 'FC', 'IsFloating', 3),
'Mem': ('Mem', 'udw', None, ('IsMemRef', 'IsLoad', 'IsStore'), 4)
'Mem': ('Mem', 'udw', None, ('IsMemRef', 'IsLoad', 'IsStore'), 4),
#'NPC': ('NPC', 'uq', None, ( None, None, 'IsControl' ), 4),
#'Runiq': ('ControlReg', 'uq', 'Uniq', None, 1),
#'FPCR': ('ControlReg', 'uq', 'Fpcr', None, 1),
# The next two are hacks for non-full-system call-pal emulation
#'R0': ('IntReg', 'uq', '0', None, 1),
#'R16': ('IntReg', 'uq', '16', None, 1)
'R0': ('IntReg', 'udw', '0', None, 1),
'R16': ('IntReg', 'udw', '16', None, 1)
}};

View file

@ -29,22 +29,24 @@
#ifndef __ARCH_SPARC_ISA_TRAITS_HH__
#define __ARCH_SPARC_ISA_TRAITS_HH__
#include "arch/sparc/faults.hh"
#include "base/misc.hh"
#include "config/full_system.hh"
#include "sim/host.hh"
//This makes sure the big endian versions of certain functions are used.
namespace BigEndianGuest {}
using namespace BigEndianGuest;
#include "arch/sparc/faults.hh"
#include "base/misc.hh"
#include "sim/host.hh"
class ExecContext;
class FastCPU;
//class FullCPU;
//class Checkpoint;
class Checkpoint;
#define TARGET_SPARC
template <class ISA> class StaticInst;
template <class ISA> class StaticInstPtr;
class StaticInst;
class StaticInstPtr;
//namespace EV5
//{
@ -52,479 +54,454 @@ template <class ISA> class StaticInstPtr;
// int ITB_ASN_ASN(uint64_t reg);
//}
class SPARCISA
namespace SparcISA
{
public:
typedef uint32_t MachInst;
typedef uint64_t Addr;
typedef uint8_t RegIndex;
typedef uint32_t MachInst;
typedef uint64_t Addr;
typedef uint8_t RegIndex;
enum
{
MemoryEnd = 0xffffffffffffffffULL,
enum
{
MemoryEnd = 0xffffffffffffffffULL,
NumFloatRegs = 32,
NumMiscRegs = 32,
NumFloatRegs = 32,
NumMiscRegs = 32,
MaxRegsOfAnyType = 32,
// Static instruction parameters
MaxInstSrcRegs = 3,
MaxInstDestRegs = 2,
MaxRegsOfAnyType = 32,
// Static instruction parameters
MaxInstSrcRegs = 3,
MaxInstDestRegs = 2,
// Maximum trap level
MaxTL = 4,
// Maximum trap level
MaxTL = 4
// semantically meaningful register indices
ZeroReg = 0 // architecturally meaningful
// the rest of these depend on the ABI
};
typedef uint64_t IntReg;
// semantically meaningful register indices
ZeroReg = 0, // architecturally meaningful
// the rest of these depend on the ABI
}
typedef uint64_t IntReg;
class IntRegFile
{
class IntRegFile
{
private:
//For right now, let's pretend the register file is static
IntReg regs[32];
//For right now, let's pretend the register file is static
IntReg regs[32];
public:
IntReg & operator [] (RegIndex index)
IntReg & operator [] (RegIndex index)
{
//Don't allow indexes outside of the 32 registers
index &= 0x1F;
return regs[index];
}
};
void serialize(std::ostream & os);
void unserialize(Checkpoint *cp, const std::string &section);
class FloatRegFile
{
private:
//By using the largest data type, we ensure everything
//is aligned correctly in memory
union
{
long double rawRegs[16];
uint64_t regDump[32];
};
class QuadRegs
{
private:
FloatRegFile * parent;
public:
QuadRegs(FloatRegFile * p) : parent(p) {;}
long double & operator [] (RegIndex index)
{
//Quad floats are index by the single
//precision register the start on,
//and only 16 should be accessed
index = (index >> 2) & 0xF;
return parent->rawRegs[index];
}
};
class DoubleRegs
{
private:
FloatRegFile * parent;
public:
DoubleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegIndex index)
{
//Double floats are index by the single
//precision register the start on,
//and only 32 should be accessed
index = (index >> 1) & 0x1F;
return ((double *)parent->rawRegs)[index];
}
};
class SingleRegs
{
private:
FloatRegFile * parent;
public:
SingleRegs(FloatRegFile * p) : parent(p) {;}
float & operator [] (RegIndex index)
{
//Only 32 single floats should be accessed
index &= 0x1F;
return ((float *)parent->rawRegs)[index];
}
};
public:
void serialize(std::ostream & os);
void unserialize(Checkpoint * cp, std::string & section);
QuadRegs quadRegs;
DoubleRegs doubleRegs;
SingleRegs singleRegs;
FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this)
{;}
};
// control register file contents
typedef uint64_t MiscReg;
// The control registers, broken out into fields
class MiscRegFile
{
public:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
};
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
const uint64_t :32; // reserved bits
} yFields;
};
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured
// on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
//Don't allow indexes outside of the 32 registers
index &= 0x1F
return regs[index];
}
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields:4;
} :4;
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields:4;
} :4;
} ccrFields;
};
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from
// previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from
// previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
const uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
const uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
};
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
}
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
};
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
const uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
const uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
};
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexecFields:5;
} :5;
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexecFields:5;
} :5;
uint64_t fcc0:2; // Floating-Point condtion codes
const uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
const uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields:5;
} :5;
const uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
const uint64_t :26; // Reserved bits
} fsrFields;
}
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
uint8_t dl:1; // Dirty lower
uint8_t du:1; // Dirty upper
fef:1; // FPRS enable floating-Point
} fprsFields;
};
void inline serialize(std::ostream & os)
void serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regs, 32);
SERIALIZE_SCALAR(pstate);
SERIAlIZE_SCALAR(tba);
SERIALIZE_SCALAR(y);
SERIALIZE_SCALAR(pil);
SERIALIZE_SCALAR(cwp);
SERIALIZE_ARRAY(tt, MaxTL);
SERIALIZE_SCALAR(ccr);
SERIALIZE_SCALAR(asi);
SERIALIZE_SCALAR(tl);
SERIALIZE_SCALAR(tpc);
SERIALIZE_SCALAR(tnpc);
SERIALIZE_ARRAY(tstate, MaxTL);
SERIALIZE_SCALAR(tick);
SERIALIZE_SCALAR(cansave);
SERIALIZE_SCALAR(canrestore);
SERIALIZE_SCALAR(otherwin);
SERIALIZE_SCALAR(cleanwin);
SERIALIZE_SCALAR(wstate);
SERIALIZE_SCALAR(ver);
SERIALIZE_SCALAR(fsr);
SERIALIZE_SCALAR(fprs);
}
void inline unserialize(Checkpoint &*cp, const std::string &section)
void unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_ARRAY(regs, 32);
UNSERIALIZE_SCALAR(pstate);
UNSERIAlIZE_SCALAR(tba);
UNSERIALIZE_SCALAR(y);
UNSERIALIZE_SCALAR(pil);
UNSERIALIZE_SCALAR(cwp);
UNSERIALIZE_ARRAY(tt, MaxTL);
UNSERIALIZE_SCALAR(ccr);
UNSERIALIZE_SCALAR(asi);
UNSERIALIZE_SCALAR(tl);
UNSERIALIZE_SCALAR(tpc);
UNSERIALIZE_SCALAR(tnpc);
UNSERIALIZE_ARRAY(tstate, MaxTL);
UNSERIALIZE_SCALAR(tick);
UNSERIALIZE_SCALAR(cansave);
UNSERIALIZE_SCALAR(canrestore);
UNSERIALIZE_SCALAR(otherwin);
UNSERIALIZE_SCALAR(cleanwin);
UNSERIALIZE_SCALAR(wstate);
UNSERIALIZE_SCALAR(ver);
UNSERIALIZE_SCALAR(fsr);
UNSERIALIZE_SCALAR(fprs);
}
};
class FloatRegFile
{
private:
//By using the largest data type, we ensure everything
//is aligned correctly in memory
union
{
double double rawRegs[16];
uint64_t regDump[32];
};
class QuadRegs
{
private:
FloatRegFile * parent;
public:
QuadRegs(FloatRegFile * p) : parent(p) {;}
double double & operator [] (RegIndex index)
{
//Quad floats are index by the single
//precision register the start on,
//and only 16 should be accessed
index = (index >> 2) & 0xF;
return parent->rawRegs[index];
}
};
class DoubleRegs
{
private:
FloatRegFile * parent;
public:
DoubleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegIndex index)
{
//Double floats are index by the single
//precision register the start on,
//and only 32 should be accessed
index = (index >> 1) & 0x1F
return ((double [])parent->rawRegs)[index];
}
}
class SingleRegs
{
private:
FloatRegFile * parent;
public:
SingleRegs(FloatRegFile * p) : parent(p) {;}
double & operator [] (RegFile index)
{
//Only 32 single floats should be accessed
index &= 0x1F
return ((float [])parent->rawRegs)[index];
}
}
public:
void inline serialize(std::ostream & os)
{
SERIALIZE_ARRAY(regDump, 32);
}
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
void inline unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_ARRAY(regDump, 32);
}
struct RegFile
{
IntRegFile intRegFile; // (signed) integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
QuadRegs quadRegs;
DoubleRegs doubleRegs;
SingleRegs singleRegs;
FloatRegFile() : quadRegs(this), doubleRegs(this), singleRegs(this)
{;}
};
Addr pc; // Program Counter
Addr npc; // Next Program Counter
// control register file contents
typedef uint64_t MiscReg;
// The control registers, broken out into fields
class MiscRegFile
{
public:
union
{
uint16_t pstate; // Process State Register
struct
{
uint16_t ag:1; // Alternate Globals
uint16_t ie:1; // Interrupt enable
uint16_t priv:1; // Privelege mode
uint16_t am:1; // Address mask
uint16_t pef:1; // PSTATE enable floating-point
uint16_t red:1; // RED (reset, error, debug) state
uint16_t mm:2; // Memory Model
uint16_t tle:1; // Trap little-endian
uint16_t cle:1; // Current little-endian
} pstateFields;
}
uint64_t tba; // Trap Base Address
union
{
uint64_t y; // Y (used in obsolete multiplication)
struct
{
uint64_t value:32; // The actual value stored in y
const uint64_t :32; // reserved bits
} yFields;
}
uint8_t pil; // Process Interrupt Register
uint8_t cwp; // Current Window Pointer
uint16_t tt[MaxTL]; // Trap Type (Type of trap which occured on the previous level)
union
{
uint8_t ccr; // Condition Code Register
struct
{
union
{
uint8_t icc:4; // 32-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} iccFields:4;
} :4;
union
{
uint8_t xcc:4; // 64-bit condition codes
struct
{
uint8_t c:1; // Carry
uint8_t v:1; // Overflow
uint8_t z:1; // Zero
uint8_t n:1; // Negative
} xccFields:4;
} :4;
} ccrFields;
}
uint8_t asi; // Address Space Identifier
uint8_t tl; // Trap Level
uint64_t tpc[MaxTL]; // Trap Program Counter (value from previous trap level)
uint64_t tnpc[MaxTL]; // Trap Next Program Counter (value from previous trap level)
union
{
uint64_t tstate[MaxTL]; // Trap State
struct
{
//Values are from previous trap level
uint64_t cwp:5; // Current Window Pointer
const uint64_t :2; // Reserved bits
uint64_t pstate:10; // Process State
const uint64_t :6; // Reserved bits
uint64_t asi:8; // Address Space Identifier
uint64_t ccr:8; // Condition Code Register
} tstateFields[MaxTL];
}
union
{
uint64_t tick; // Hardware clock-tick counter
struct
{
uint64_t counter:63; // Clock-tick count
uint64_t npt:1; // Non-priveleged trap
} tickFields;
}
uint8_t cansave; // Savable windows
uint8_t canrestore; // Restorable windows
uint8_t otherwin; // Other windows
uint8_t cleanwin; // Clean windows
union
{
uint8_t wstate; // Window State
struct
{
uint8_t normal:3; // Bits TT<4:2> are set to on a normal
// register window trap
uint8_t other:3; // Bits TT<4:2> are set to on an "otherwin"
// register window trap
} wstateFields;
}
union
{
uint64_t ver; // Version
struct
{
uint64_t maxwin:5; // Max CWP value
const uint64_t :2; // Reserved bits
uint64_t maxtl:8; // Maximum trap level
const uint64_t :8; // Reserved bits
uint64_t mask:8; // Processor mask set revision number
uint64_t impl:16; // Implementation identification number
uint64_t manuf:16; // Manufacturer code
} verFields;
}
union
{
uint64_t fsr; // Floating-Point State Register
struct
{
union
{
uint64_t cexc:5; // Current excpetion
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} cexecFields:5;
} :5;
union
{
uint64_t aexc:5; // Accrued exception
struct
{
uint64_t nxc:1; // Inexact
uint64_t dzc:1; // Divide by zero
uint64_t ufc:1; // Underflow
uint64_t ofc:1; // Overflow
uint64_t nvc:1; // Invalid operand
} aexecFields:5;
} :5;
uint64_t fcc0:2; // Floating-Point condtion codes
const uint64_t :1; // Reserved bits
uint64_t qne:1; // Deferred trap queue not empty
// with no queue, it should read 0
uint64_t ftt:3; // Floating-Point trap type
uint64_t ver:3; // Version (of the FPU)
const uint64_t :2; // Reserved bits
uint64_t ns:1; // Nonstandard floating point
union
{
uint64_t tem:5; // Trap Enable Mask
struct
{
uint64_t nxm:1; // Inexact
uint64_t dzm:1; // Divide by zero
uint64_t ufm:1; // Underflow
uint64_t ofm:1; // Overflow
uint64_t nvm:1; // Invalid operand
} temFields:5;
} :5;
const uint64_t :2; // Reserved bits
uint64_t rd:2; // Rounding direction
uint64_t fcc1:2; // Floating-Point condition codes
uint64_t fcc2:2; // Floating-Point condition codes
uint64_t fcc3:2; // Floating-Point condition codes
const uint64_t :26; // Reserved bits
} fsrFields;
}
union
{
uint8_t fprs; // Floating-Point Register State
struct
{
dl:1; // Dirty lower
du:1; // Dirty upper
fef:1; // FPRS enable floating-Point
} fprsFields;
};
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
void serialize(std::ostream & os)
{
SERIALIZE_SCALAR(pstate);
SERIAlIZE_SCALAR(tba);
SERIALIZE_SCALAR(y);
SERIALIZE_SCALAR(pil);
SERIALIZE_SCALAR(cwp);
SERIALIZE_ARRAY(tt, MaxTL);
SERIALIZE_SCALAR(ccr);
SERIALIZE_SCALAR(asi);
SERIALIZE_SCALAR(tl);
SERIALIZE_SCALAR(tpc);
SERIALIZE_SCALAR(tnpc);
SERIALIZE_ARRAY(tstate, MaxTL);
SERIALIZE_SCALAR(tick);
SERIALIZE_SCALAR(cansave);
SERIALIZE_SCALAR(canrestore);
SERIALIZE_SCALAR(otherwin);
SERIALIZE_SCALAR(cleanwin);
SERIALIZE_SCALAR(wstate);
SERIALIZE_SCALAR(ver);
SERIALIZE_SCALAR(fsr);
SERIALIZE_SCALAR(fprs);
}
static StaticInstPtr decodeInst(MachInst);
void unserialize(Checkpoint &* cp, std::string & section)
{
UNSERIALIZE_SCALAR(pstate);
UNSERIAlIZE_SCALAR(tba);
UNSERIALIZE_SCALAR(y);
UNSERIALIZE_SCALAR(pil);
UNSERIALIZE_SCALAR(cwp);
UNSERIALIZE_ARRAY(tt, MaxTL);
UNSERIALIZE_SCALAR(ccr);
UNSERIALIZE_SCALAR(asi);
UNSERIALIZE_SCALAR(tl);
UNSERIALIZE_SCALAR(tpc);
UNSERIALIZE_SCALAR(tnpc);
UNSERIALIZE_ARRAY(tstate, MaxTL);
UNSERIALIZE_SCALAR(tick);
UNSERIALIZE_SCALAR(cansave);
UNSERIALIZE_SCALAR(canrestore);
UNSERIALIZE_SCALAR(otherwin);
UNSERIALIZE_SCALAR(cleanwin);
UNSERIALIZE_SCALAR(wstate);
UNSERIALIZE_SCALAR(ver);
UNSERIALIZE_SCALAR(fsr);
UNSERIALIZE_SCALAR(fprs);
}
};
// return a no-op instruction... used for instruction fetch faults
static const MachInst NoopMachInst;
typedef union
{
IntReg intreg;
FloatReg fpreg;
MiscReg ctrlreg;
} AnyReg;
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr)
{
return addr;
}
struct RegFile
{
IntRegFile intRegFile; // (signed) integer register file
FloatRegFile floatRegFile; // floating point register file
MiscRegFile miscRegFile; // control register file
static inline Addr fetchPCToRealPC(const Addr &addr)
{
return addr;
}
Addr pc; // Program Counter
Addr npc; // Next Program Counter
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize()
{
return sizeof(MachInst);
}
void serialize(std::ostream &os);
void unserialize(Checkpoint *cp, const std::string &section);
};
static StaticInstPtr<AlphaISA> decodeInst(MachInst);
// return a no-op instruction... used for instruction fetch faults
static const MachInst NoopMachInst;
// Instruction address compression hooks
static inline Addr realPCToFetchPC(const Addr &addr)
{
return addr;
}
static inline Addr fetchPCToRealPC(const Addr &addr)
{
return addr;
}
// the size of "fetched" instructions (not necessarily the size
// of real instructions for PISA)
static inline size_t fetchInstSize()
{
return sizeof(MachInst);
}
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
static void zeroRegisters(XC *xc);
/**
* Function to insure ISA semantics about 0 registers.
* @param xc The execution context.
*/
template <class XC>
static void zeroRegisters(XC *xc);
};
typedef SPARCISA TheISA;
typedef TheISA::MachInst MachInst;
typedef TheISA::Addr Addr;
typedef TheISA::RegIndex RegIndex;
typedef TheISA::IntReg IntReg;
typedef TheISA::IntRegFile IntRegFile;
typedef TheISA::FloatReg FloatReg;
typedef TheISA::FloatRegFile FloatRegFile;
typedef TheISA::MiscReg MiscReg;
typedef TheISA::MiscRegFile MiscRegFile;
typedef TheISA::AnyReg AnyReg;
typedef TheISA::RegFile RegFile;
const int VMPageSize = TheISA::VMPageSize;
const int LogVMPageSize = TheISA::LogVMPageSize;
const int ZeroReg = TheISA::ZeroReg;
const int BranchPredAddrShiftAmt = TheISA::BranchPredAddrShiftAmt;
const int MaxAddr = (Addr)-1;
#ifndef FULL_SYSTEM
class SyscallReturn {
public:
template <class T>
SyscallReturn(T v, bool s)
{
retval = (uint64_t)v;
success = s;
}
#if !FULL_SYSTEM
class SyscallReturn
{
public:
template <class T>
SyscallReturn(T v, bool s)
{
retval = (uint64_t)v;
success = s;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
retval = (uint64_t)v;
}
template <class T>
SyscallReturn(T v)
{
success = (v >= 0);
retval = (uint64_t)v;
}
~SyscallReturn() {}
~SyscallReturn() {}
SyscallReturn& operator=(const SyscallReturn& s) {
retval = s.retval;
success = s.success;
return *this;
}
SyscallReturn& operator=(const SyscallReturn& s)
{
retval = s.retval;
success = s.success;
return *this;
}
bool successful() { return success; }
uint64_t value() { return retval; }
bool successful() { return success; }
uint64_t value() { return retval; }
private:
uint64_t retval;
bool success;
private:
uint64_t retval;
bool success;
};
#endif
#ifdef FULL_SYSTEM
#if FULL_SYSTEM
#include "arch/alpha/ev5.hh"
#endif

View file

@ -27,7 +27,7 @@
*/
#include "arch/sparc/common_syscall_emul.hh"
#include "arch/sparc/linux_process.hh"
#include "arch/sparc/linux/process.hh"
#include "arch/sparc/isa_traits.hh"
#include "base/trace.hh"

View file

@ -29,7 +29,7 @@
#ifndef __SPARC_PROCESS_HH__
#define __SPARC_PROCESS_HH__
#include "arch/sparc/linux_process.hh"
#include "arch/sparc/linux/process.hh"
#include "base/loader/object_file.hh"
namespace SparcISA

View file

@ -341,11 +341,11 @@ for build_dir in build_dirs:
sticky_opts.files = []
# Name of default options file is taken from 'default=' on command
# line if set, otherwise name of build dir.
default_options_file = os.path.join('build_options', 'default',
default_options_file = os.path.join('default_options',
ARGUMENTS.get('default', build_dir))
if os.path.isfile(default_options_file):
sticky_opts.files.append(default_options_file)
current_options_file = os.path.join('build_options', 'current', build_dir)
current_options_file = os.path.join('options', build_dir)
if os.path.isfile(current_options_file):
sticky_opts.files.append(current_options_file)
else:
@ -355,7 +355,7 @@ for build_dir in build_dirs:
if not os.path.isdir(opt_dir):
os.mkdir(opt_dir)
if not sticky_opts.files:
print "%s: No options file found in build_options, using defaults." \
print "%s: No options file found in options, using defaults." \
% build_dir
# Apply current option settings to env

View file

@ -137,19 +137,6 @@ Statistics::regStats(const string &_name)
}
}
/* _faults
.init(NumFaults)
.name(name() + ".faults")
.desc("number of faults")
.flags(total | pdf | nozero | nonan)
;
for (int i = 1; i < NumFaults; ++i) {
const char *str = (*ListOfFaults[i])->name;
if (str)
_faults.subname(i, str);
}*/
_mode
.init(cpu_mode_num)
.name(name() + ".mode_switch")

View file

@ -175,11 +175,6 @@ class Statistics : public Serializable
void ivlb() { _ivlb++; }
void ivle() { _ivle++; }
void hwrei() { _hwrei++; }
void fault(Fault fault)
{
if(fault != NoFault)
fault->stat()++;
}// FIXME: When there are no generic system fault objects, this will go back to _faults[fault]++; }
void swpipl(int ipl);
void mode(cpu_mode newmode, ExecContext *xc);
void context(Addr oldpcbb, Addr newpcbb, ExecContext *xc);

View file

@ -28,10 +28,19 @@
#include "sim/faults.hh"
#include "cpu/exec_context.hh"
#include "cpu/base.hh"
#if !FULL_SYSTEM
void FaultBase::invoke(ExecContext * xc)
{
fatal("fault (%s) detected @ PC 0x%08p", name(), xc->readPC());
}
#else
void FaultBase::invoke(ExecContext * xc)
{
DPRINTF(Fault, "Fault %s at PC: %#x\n", name(), xc->regs.pc);
xc->cpu->recordEvent(csprintf("Fault %s", name()));
assert(!xc->misspeculating());
}
#endif

View file

@ -51,9 +51,8 @@ class FaultBase : public RefCounted
{
public:
virtual FaultName name() = 0;
virtual FaultStat & stat() = 0;
#if FULL_SYSTEM
virtual void invoke(ExecContext * xc) = 0;
virtual void invoke(ExecContext * xc);
#else
virtual void invoke(ExecContext * xc);
#endif