Merge zizzer.eecs.umich.edu:/bk/newmem

into  ahchoo.blinky.homelinux.org:/home/gblack/m5/newmem-x86

--HG--
extra : convert_revision : 7be8ebe55a7b11552d78701520f93aa86db1e501
This commit is contained in:
Gabe Black 2007-04-03 15:01:36 +00:00
commit 93d4c624c5
7 changed files with 382 additions and 123 deletions

View file

@ -61,14 +61,15 @@
0x1: decode OPCODE_OP_TOP5 {
format WarnUnimpl {
0x00: decode OPCODE_OP_BOTTOM3 {
0x4: TaggedOp::add({{AddI %0 %0}}, [rAl]);
0x5: TaggedOp::add({{AddI %0 %0}}, [rAx]);
0x6: push_ES();
0x7: pop_ES();
default: MultiOp::add(
{{Add %0 %0 %1}},
OPCODE_OP_BOTTOM3,
[[Eb,Gb],[Ev,Gv],
[Gb,Eb],[Gv,Ev],
[Al,Ib],[rAx,Iz]]);
[Gb,Eb],[Gv,Ev]]);
}
0x01: decode OPCODE_OP_BOTTOM3 {
0x0: or_Eb_Gb();
@ -125,15 +126,16 @@
0x7: das();
}
0x06: decode OPCODE_OP_BOTTOM3 {
0x0: xor_Eb_Gb();
0x1: xor_Ev_Gv();
0x2: xor_Gb_Eb();
0x3: xor_Gv_Ev();
0x4: xor_Al_Ib();
0x5: xor_rAX_Iz();
0x4: TaggedOp::xor({{XorI %0 %0}}, [rAl]);
0x5: TaggedOp::xor({{XorI %0 %0}}, [rAx]);
0x6: M5InternalError::error(
{{"Tried to execute the SS segment override prefix!"}});
0x7: aaa();
default: MultiOp::xor(
{{Xor %0 %0 %1}},
OPCODE_OP_BOTTOM3,
[[Eb,Gb],[Ev,Gv],
[Gb,Eb],[Gv,Ev]]);
}
0x07: decode OPCODE_OP_BOTTOM3 {
0x0: cmp_Eb_Gb();

View file

@ -95,6 +95,9 @@
//malfunction of the decode mechanism.
##include "error.isa"
//Include code to build up macro op instructions
##include "macroop.isa"
//Include a format which implements a batch of instructions which do the same
//thing on a variety of inputs
##include "multi.isa"

View file

@ -0,0 +1,160 @@
// -*- mode:c++ -*-
// Copyright (c) 2007 The Hewlett-Packard Development Company
// All rights reserved.
//
// Redistribution and use of this software in source and binary forms,
// with or without modification, are permitted provided that the
// following conditions are met:
//
// The software must be used only for Non-Commercial Use which means any
// use which is NOT directed to receiving any direct monetary
// compensation for, or commercial advantage from such use. Illustrative
// examples of non-commercial use are academic research, personal study,
// teaching, education and corporate research & development.
// Illustrative examples of commercial use are distributing products for
// commercial advantage and providing services using the software for
// commercial advantage.
//
// If you wish to use this software or functionality therein that may be
// covered by patents for commercial use, please contact:
// Director of Intellectual Property Licensing
// Office of Strategy and Technology
// Hewlett-Packard Company
// 1501 Page Mill Road
// Palo Alto, California 94304
//
// Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer. Redistributions
// in binary form must reproduce the above copyright notice, this list of
// conditions and the following disclaimer in the documentation and/or
// other materials provided with the distribution. Neither the name of
// the COPYRIGHT HOLDER(s), HEWLETT-PACKARD COMPANY, nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission. No right of
// sublicense is granted herewith. Derivatives of the software and
// output created using the software may be prepared, but only for
// Non-Commercial Uses. Derivatives of the software may be shared with
// others provided: (i) the others agree to abide by the list of
// conditions herein which includes the Non-Commercial Use restrictions;
// and (ii) such Derivatives of the software include the above copyright
// notice to acknowledge the contribution from this software where
// applicable, this list of conditions and the disclaimer below.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Authors: Gabe Black
////////////////////////////////////////////////////////////////////
//
// Instructions that do the same thing to multiple sets of arguments.
//
output header {{
// Base class for most macroops, except ones that need to commit as
// they go.
class X86MacroInst : public X86StaticInst
{
protected:
const uint32_t numMicroOps;
//Constructor.
X86MacroInst(const char *mnem, ExtMachInst _machInst,
uint32_t _numMicroOps)
: X86StaticInst(mnem, _machInst, No_OpClass),
numMicroOps(_numMicroOps)
{
assert(numMicroOps);
microOps = new StaticInstPtr[numMicroOps];
flags[IsMacroOp] = true;
}
~X86MacroInst()
{
delete [] microOps;
}
std::string generateDisassembly(Addr pc,
const SymbolTable *symtab) const;
StaticInstPtr * microOps;
StaticInstPtr fetchMicroOp(MicroPC microPC)
{
assert(microPC < numMicroOps);
return microOps[microPC];
}
%(BasicExecPanic)s
};
// Base class for macroops which commit as they go. This is for
// instructions which can be partially completed like those with the
// rep prefix. This prevents those instructions from overflowing
// buffers with uncommitted microops.
class X86RollingMacroInst : public X86MacroInst
{
protected:
//Constructor.
X86RollingMacroInst(const char *mnem, ExtMachInst _machInst,
uint32_t _numMicroOps)
: X86MacroInst(mnem, _machInst, numMicroOps)
{}
};
}};
// Basic instruction class constructor template.
def template MacroConstructor {{
inline %(class_name)s::%(class_name)s(ExtMachInst machInst)
: %(base_class)s("%(mnemonic)s", machInst, %(num_micro_ops)s)
{
%(constructor)s;
//alloc_micro_ops is the code that sets up the microOps
//array in the parent class. This hook will hopefully
//allow all that to be automated.
%(alloc_micro_ops)s;
setMicroFlags();
}
}};
let {{
def genMacroOp(name, Name, ops, rolling = False):
baseClass = 'X86MacroInst'
if rolling:
baseClass = 'X86RollingMacroInst'
numMicroOps = len(ops)
allocMicroOps = ''
micropc = 0
allocMicroOps += \
"microOps[0] = %s;\n" % \
op.getAllocator(True, not rolling, True, False)
micropc += 1
if numMicroOps > 2:
for op in ops[1:-1]:
allocMicroOps += \
"microOps[%d] = %s;\n" % \
(micropc, op.getAllocator(True, not rolling, False, False))
micropc += 1
allocMicroOps += \
"microOps[%d] = %s;\n" % \
op.getAllocator(True, not rolling, False, True)
iop = InstObjParams(name, Name, baseClass,
{'code' : '', 'num_micro_ops' : numMicroOps,
'alloc_micro_ops' : allocMicroOps})
header_output = BasicDeclare.subst(iop)
decoder_output = MacroConstructor.subst(iop)
decode_block = BasicDecode.subst(iop)
exec_output = ''
return (header_output, decoder_output, decode_block, exec_output)
}};

View file

@ -60,95 +60,152 @@
// Instructions that do the same thing to multiple sets of arguments.
//
output header {{
}};
output decoder {{
}};
output exec {{
}};
let {{
multiops = {}
}};
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
# These are C++ statements to create each type of static int. Since we
# don't know what will be microcoded and what won't, we can't assume a
# particular set of arguments for the constructor.
instNew = []
orig_code = code
opRe = re.compile(r"%(?P<operandNum>[0-9]*)")
# Get all the labels out of the code and make a dict for them. We'll do
# this once since the position of labels shouldn't need to change at all.
ops = assembleMicro(code)
labels = buildLabelDict(ops)
for tagSet in opTags:
# A list of strings which either have the register number to use, or
# a piece of code for calculating it.
regNums = []
code = orig_code
# Build up a name for this instructions class using the argument
# types. Each variation will get its own name this way.
postfix = ''
for tag in tagSet:
postfix += '_' + tag
# Figure out what register indexes to use for each operand. This
# is where loads/stores could be set up. I need to distinguish
# between inputs and outputs.
# For right now, the indexes are just an increasing sequence
counter = 0
for tag in tagSet:
regNums.append("%d" % counter)
counter += 1
# Replace the placeholders %0, %1, etc., with the right register
# indexes.
opMatch = opRe.search(code)
while opMatch:
opNum = opMatch.group("operandNum")
opNum = int(opNum)
if opNum > len(regNums):
print "No operand type specified for operand %d!" % opNum
print "I should bail out here too!"
regNum = regNums[opNum]
code = opRe.sub(regNum, code, 1)
opMatch = opRe.search(code)
# All the loads which feed this instruction
loads = []
# All the ops that make up the instruction proper.
ops = assembleMicro(code)
# Get all the labels out and make a dict for them
# All the stores for this instruction's results
stores = []
# Various counts
numLoads = len(loads)
numOps = len(ops)
numStores = len(stores)
totalOps = numLoads + numOps + numStores
print "There are %d total ops" % totalOps
# This builds either a regular or macro op to implement the sequence of
# ops we give it.
def genInst(name, Name, ops):
# If we can implement this instruction with exactly one microop, just
# use that directly.
newStmnt = ''
if totalOps == 1:
newStmnt = ops[0].getAllocator(labels)
if len(ops) == 1:
decode_block = "return (X86StaticInst *)(%s);" % \
ops[0].getAllocator()
return ('', '', decode_block, '')
else:
# Build up a macro op. We'll punt on this for now
pass
instNew.append(newStmnt)
decodeBlob = 'switch(%s) {\n' % switchVal
counter = 0
for newStmnt in instNew:
decodeBlob += 'case %d: return (X86StaticInst *)(%s);\n' % \
(counter, newStmnt)
counter += 1
decodeBlob += '}\n'
decode_block = decodeBlob
# Build a macroop to contain the sequence of microops we've
# been given.
return genMacroOp(name, Name, ops)
}};
let {{
# This code builds up a decode block which decodes based on switchval.
# vals is a dict which matches case values with what should be decoded to.
# builder is called on the exploded contents of "vals" values to generate
# whatever code should be used.
def doMultiOp(name, Name, builder, switchVal, vals, default = None):
header_output = ''
decoder_output = ''
decode_block = 'switch(%s) {\n' % switchVal
exec_output = ''
for (val, todo) in vals.items():
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *todo)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
exec_output += new_exec_output
if default:
(new_header_output,
new_decoder_output,
new_decode_block,
new_exec_output) = builder(name, Name, *default)
header_output += new_header_output
decoder_output += new_decoder_output
decode_block += '\tdefault: %s\n' % new_decode_block
exec_output += new_exec_output
decode_block += '}\n'
return (header_output, decoder_output, decode_block, exec_output)
}};
let {{
# This function specializes the given piece of code to use a particular
# set of argument types described by "opTags". These are "implemented"
# in reverse order.
def doCompOps(name, Name, code, opTags, postfix):
opNum = len(opTags) - 1
while len(opTags):
# print "Building a composite op with tags", opTags
# print "And code", code
opNum = len(opTags) - 1
# A regular expression to find the operand placeholders we're
# interested in.
opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
tag = opTags[opNum]
# Build up a name for this instructions class using the argument
# types. Each variation will get its own name this way.
postfix = '_' + tag + postfix
tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
tagMatch = tagParser.search(tag)
if tagMatch == None:
raise Exception, "Problem parsing operand tag %s" % tag
reg = tagMatch.group("tagReg")
tagType = tagMatch.group("tagType")
tagSize = tagMatch.group("tagSize")
if reg:
#Figure out what to do with fixed register operands
if reg in ("Ax", "Bx", "Cx", "Dx"):
code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
elif reg == "Al":
# We need a way to specify register width
code = opRe.sub("{INTREG_RAX}", code)
else:
print "Didn't know how to encode fixed register %s!" % reg
elif tagType == None or tagSize == None:
raise Exception, "Problem parsing operand tag: %s" % tag
elif tagType == "C" or tagType == "D" or tagType == "G" or \
tagType == "P" or tagType == "S" or \
tagType == "T" or tagType == "V":
# Use the "reg" field of the ModRM byte to select the register
code = opRe.sub("{(uint8_t)MODRM_REG}", code)
elif tagType == "E" or tagType == "Q" or tagType == "W":
# This might refer to memory or to a register. We need to
# divide it up farther.
regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
regTags = copy.copy(opTags)
regTags.pop(-1)
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
memCode = opRe.sub("0", code)
memTags = copy.copy(opTags)
memTags.pop(-1)
return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
{"3" : (regCode, regTags, postfix)},
(memCode, memTags, postfix))
elif tagType == "I" or tagType == "J":
# Substitute in an immediate
code = opRe.sub("{IMMEDIATE}", code)
elif tagType == "M":
# This needs to refer to memory, but we'll fill in the details
# later. It needs to take into account unaligned memory
# addresses.
code = opRe.sub("0", code)
elif tagType == "PR" or tagType == "R" or tagType == "VR":
# There should probably be a check here to verify that mod
# is equal to 11b
code = opRe.sub("{(uint8_t)MODRM_RM}", code)
else:
raise Exception, "Unrecognized tag %s." % tag
opTags.pop(-1)
# At this point, we've built up "code" to have all the necessary extra
# instructions needed to implement whatever types of operands were
# specified. Now we'll assemble it it into a microOp sequence.
ops = assembleMicro(code)
# Build a macroop to contain the sequence of microops we've
# constructed. The decode block will be used to fill in our
# inner decode structure, and the rest will be concatenated and
# passed back.
return genInst(name, Name + postfix, ops)
}};
def format TaggedOp(code, tagSet) {{
(header_output,
decoder_output,
decode_block,
exec_output) = doCompOps(name, Name, code, tagSet, '')
}};
def format MultiOp(code, switchVal, opTags, *opt_flags) {{
switcher = {}
for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
switcher[count] = (code, tagSet, '')
(header_output,
decoder_output,
decode_block,
exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
}};

View file

@ -83,9 +83,14 @@
////////////////////////////////////////////////////////////////////
//
// Output include file directives.
// Output include file directives. Also import the python modules we
// need for all the x86 custom decoder stuff
//
let {{
import copy
}};
output header {{
#include <cstring>
#include <sstream>

View file

@ -67,7 +67,18 @@ let {{
self.label = ''
self.args = []
def getAllocator(self, labelDict = {}):
# This converts a list of python bools into
# a comma seperated list of C++ bools.
def microFlagsText(self, vals):
text = ""
for val in vals:
if val:
text += ", true"
else:
text += ", false"
return text
def getAllocator(self, *microFlags):
args = ''
for arg in self.args:
if arg.has_key("operandConst"):
@ -75,13 +86,21 @@ let {{
elif arg.has_key("operandCode"):
args += ", %s" % arg["operandCode"]
elif arg.has_key("operandLabel"):
if not labelDict.has_key(arg["operandLabel"]):
print "Unrecognized label %s!" % arg["operandLabel"]
args += ", %s" % labelDict[arg["operandLabel"]]
raise Exception, "Found a label while creating allocator string."
else:
print "Unrecognized operand type!"
return 'new %s(machInst %s)' % (self.className, args)
raise Exception, "Unrecognized operand type."
return 'new %s(machInst%s%s)' % (self.className, self.microFlagsText(microFlags), args)
}};
let {{
def buildLabelDict(ops):
labels = {}
micropc = 0
for op in ops:
if op.label:
labels[op.label] = count
micropc += 1
return labels
def assembleMicro(code):
# This function takes in a block of microcode assembly and returns
@ -113,25 +132,26 @@ let {{
statement = MicroOpStatement()
# Get a line and seperate it from the rest of the code
line = lineMatch.group("line")
print "Parsing line %s" % line
orig_line = line
# print "Parsing line %s" % line
code = lineRe.sub('', code, 1)
# Find the label, if any
labelMatch = labelRe.search(line)
if labelMatch != None:
statement.label = labelMatch.group("label")
print "Found label %s." % statement.label
# print "Found label %s." % statement.label
# Clear the label from the statement
line = labelRe.sub('', line, 1)
# Find the class name which is roughly equivalent to the op name
classMatch = classRe.search(line)
if classMatch == None:
print "Oh no! I can't find what instruction you want!"
print "I should really bail out here, but I don't know how!"
raise Exception, "Couldn't find class name in statement: %s" \
% orig_line
else:
statement.className = classMatch.group("className")
print "Found class name %s." % statement.className
# print "Found class name %s." % statement.className
# Clear the class name from the statement
line = classRe.sub('', line, 1)
@ -149,24 +169,31 @@ let {{
if opMatch.group(opType):
statement.args[-1][opType] = opMatch.group(opType)
if len(statement.args[-1]) == 0:
print "I had a problem parsing an operand!"
print "Problem parsing operand in statement: %s" \
% orig_line
line = opRe.sub('', line, 1)
print "Found operand %s." % statement.args[-1]
# print "Found operand %s." % statement.args[-1]
opMatch = opRe.search(line)
print "Found operands", statement.args
# print "Found operands", statement.args
# Add this statement to our collection
statements.append(statement)
# Get the next line
lineMatch = lineRe.search(code)
return statements
def buildLabelDict(ops):
labels = {}
count = 0
for op in ops:
if op.label:
labels[op.label] = count
count += 1
# Decode the labels into displacements
labels = buildLabelDict(statements)
micropc = 0
for statement in statements:
for arg in statement.args:
if arg.has_key("operandLabel"):
if not labels.has_key(arg["operandLabel"]):
raise Exception, "Unrecognized label: %s." % arg["operandLabel"]
# This is assuming that intra microcode branches go to
# the next micropc + displacement, or
# micropc + 1 + displacement.
arg["operandConst"] = labels[arg["operandLabel"]] - micropc - 1
micropc += 1
return statements
}};

View file

@ -212,11 +212,16 @@ namespace X86ISA
//Determine what to expect next
if (UsesModRM[emi.opcode.num - 1][nextByte]) {
nextState = ModRMState;
} else if(immediateSize) {
nextState = ImmediateState;
} else {
emiIsReady = true;
nextState = PrefixState;
//If there's no modRM byte, set it to 0 so we can detect
//that later.
emi.modRM = 0;
if(immediateSize) {
nextState = ImmediateState;
} else {
emiIsReady = true;
nextState = PrefixState;
}
}
}
return nextState;
@ -241,11 +246,11 @@ namespace X86ISA
displacementSize = 0;
} else {
//figure out 32/64 bit displacement size
if(nextByte & 0xC7 == 0x05 ||
if(nextByte & 0xC6 == 0x04 ||
nextByte & 0xC0 == 0x80)
displacementSize = 4;
else if(nextByte & 0xC0 == 0x40)
displacementSize = 2;
displacementSize = 1;
else
displacementSize = 0;
}